El GPS es un dispositivo bien conocido en nuestros días. Desde su nacimiento en el año 1.973 ha sufrido muchísimas mejoras. Sin embargo, prácticamente sin darnos cuenta estas modificaciones han traído consigo mejoras sin saber qué beneficios nos aportan. Con muchas siglas, eso sí.
Nacimiento y desarrollo.
No podemos explicar algunas de sus mejoras sin recordar ligeramente sus orígenes, aunque sea de manera breve.
Algunos de los lectores podrán recordar algunos de los sistemas de navegación predecesores al GPS. El LORAN, OMEGA o DECCA comenzaron a desarrollarse con el fin de obtener y de mejorar la precisión de sus sistemas de orientación de armas en las diversas fuerzas armadas de los Estados Unidos. Coincidente con la Guerra Fría en la que sus misiles balísticos necesitaban mejorar la precisión de sus sistemas de navegación, además de conocer la posición de sus submarinos y bombarderos estratégicos.
Cuando los soviéticos comenzaron a lanzar satélites a mediados de los años 50, se dieron cuenta que, aplicando el Efecto Doppler a las señales electromagnéticas enviadas, podían conocer la posición de los satélites en órbita alrededor de la tierra. Poco después intentarían resolver la ecuación al revés. Es decir, un usuario en tierra, mediante la posición conocida de los satélites, podía determinar su posición. El GPS, de hecho, utiliza el mismo método, pero en sentido contrario, para ello es necesario que el GPS lleve un reloj a bordo con la precisión requerida. Con toda esta tecnología y sus posteriores estudios se pudo desarrollar una tecnología que mejoraría la precisión de navegación de miles de metros a cientos de metros.
En 1.973, fue creado el NAVSTAR – GPS, y más tarde se le acabaría llamando Global Positioning System, más conocido con sus siglas como GPS. Entre 1.973 y 1.985 se pusieron en órbita los 10 satélites necesarios para formar la constelación. No sería hasta 1.993 que la constelación la formarían 24 unidades. Aunque en realidad hoy en día son unos 30, de los cuales 24 se encuentran activos.
¿Pero cómo funciona?
Como se ha explicado anteriormente, existe una constelación de satélites describiendo 6 órbitas diferentes dando una vuelta a la tierra cada 12 horas a una altura de más de 20.000 km. Para determinar la posición, los satélites envían una señal desde una posición y hora conocida. La señal electromagnética llegará a un receptor en tierra que sabrá a qué hora exacta llegó la señal. Sabiendo la velocidad de propagación de la onda, el receptor podrá determinar la distancia desde el satélite. Sin embargo, esta distancia sería el radio de una esfera alrededor del propio satélite. Al calcular las distancias con cuatro satélites, el receptor podrá determinar su posición en el punto de cruce de esas cuatro esferas. Dicho cruce no sólo da una posición geográfica sobre un plano horizontal, sino también su altura sobre el terreno.
Dichos satélites emiten varios tipos de ondas en la banda “L”. L1 (1575,42 MHz) transmite en una frecuencia determinada para uso civil y L2 (1227,6 MHz), para uso militar y de manera codificada.
SA (Selective Availability).
En el año 1.983 un B747 de Korean Airlines fue derribado al entrar en espacio aéreo prohibido de la Unión Soviética debido a errores en la navegación. El presidente de Estados Unidos entonces, Ronald Reagan, prometió en ese momento que el GPS estuviera disponible para uso civil de manera gratuita.
La señal del GPS tiene una precisión de unos 30 metros. Cuando el GPS fue creado, el ejército norteamericano, por motivos de seguridad, se reservó que dicha precisión no fuera utilizada por sus enemigos. Así, la señal L1 de uso civil estaba degradada, alterando el reloj de manera aleatoria. Así, la precisión caía hasta niveles de algo más de 100 metros.
A mediados de los años 80, algunas organizaciones como la FAA, United States Department of Transport (DOT) y United States Coast Guard (USCG) ejercieron presión, sin resultado para desconectar el SA.
DGPS (GPS Diferencial).
Como respuesta, la USCG experimentó y desarrolló un sistema que le permitía mejorar la precisión a pesar del Selective Availability. Dicho sistema consistía en colocar una estación en un punto, cuyas coordenadas geográficas eran conocidas. La estación estaba equipada con un receptor de señal GPS y podía cotejar la señal del GPS con su posición real. La estación contaba con un emisor que difundía en frecuencias VHF el error de la señal GPS a otros receptores GPS en la zona de cobertura VHF de la estación para corregir en sus sistemas de posicionamiento el error en la señal del GPS, mejorando la precisión incluso con el SA activado. Este sistema se denominó DGPS o Differential GPS (GPS diferencial).
A finales de los años 90, y dado el éxito del DGPS, la necesidad de mantener el SA desaparecía. Bill Clinton eliminó de manera definitiva el SA en los GPS civiles en el año 2.000. Por otra parte, el ejército norteamericano también había podido desarrollar otra vía para alterar la posición de los GPS en determinadas zonas geográficas por lo que ya no podían alegar seguridad para seguir utilizando el Selective Availability.
Hay que añadir, que el desarrollo del DGPS mejoró la precisión del GPS incluso por encima de la propia señal GPS sin el SA activado, dando posiciones con márgenes de entre 5 y 10 metros.
La FAA comenzó a utilizar el sistema DGPS para desarrollar sistemas que le permitieran, entre otras cosas, reducir el uso de radioayudas a la navegación, que costaban millones de dólares mantener y cuya precisión quedaba, en algunos casos, muy por debajo del GPS. Comenzaron a estudiar los sistemas de aumentación de la señal GPS, conocido como WAAS (Wide Area Augmentation System). De esto hablaremos en la siguiente parte.
Estupendo artículo Dani, de verdad, sólo cambiaría la palabra “altura”, por “altitud”, porque supongamos que vuelas a FL420 (42.000FT) por encima del monte Everest que tiene 28.000FT (no recuerdo muy bien con exactitud)?, ¿el GPS te indica 14.000FT de “altura”?, o más bien, te indicará (mucho más probable) 42.000FT según el WGS82?
¡Gracias! La distancia que se calcula es la que hay entre el satélite y el receptor. El receptor, según su base ee datos de mapas calcula la distancia real desde la superficie que tenga establecida. Es decir, la altura o la altitud según si hablamos desde el terreno o el nivel del mar.
Los GPS de aviación de hoy en día son capaces de dar dos: altitud real, y la altitud basada en QNE/QNH. De hecho, lo explicaré en otro capítulo, pero eso te permite bajar los mínimos de aproximación a casi hasta el suelo con precisión.
En caso de fallo de los sistemas de indicación de altitud, o perder todos los inerciales (ADR) en un Airbus, automáticamente el avión te da altitud GPS, que es la altitud real con respecto al nivel del mar. Para al menos tener alguna indicación si te quedas sin altímetros.