Archivo de la categoría: Artículos técnicos

Artículos técnicos.

Artículos de avación sobre temas más técnicos. Meteorología, procedimientos,  motores, etc.

Tanto a los profesionales como los amateur nos gusta seguir aprendiendo cosas nuevas y seguir profundizando en el conocimiento de la aviación.

Algunos profesionales del sector exponen aquí temas interesantes sobre aviación.

Aquí podrás leer curiosidades sobre aviación. Tanto comercial, como aviación general y militar.

No te pierdas nuestras próximas publicaciones.

En Zona de Volcanes

Agencia Reuters.

El 24 de junio de 1.982, un B747-200 de British Airways entre Kuala Lumpur y Perth, se introdujo inadvertidamente en una nube de cenizas volcánicas durante la noche. Provocó la parada de sus cuatro motores y, tras varios intentos consiguieron arrancar tres de ellos y mantenerlos funcionando hasta su aterrizaje en Jakarta.

En el pasado vuelo desde Madrid a Lima, en un A330, sobrevolamos una zona donde se encuentra activo el volcán de La Soufriere en la isla mayor de San Vicente y las Granadinas. ¿Cómo se gestiona y prepara esta situación en un vuelo para que no suceda lo que en 1.982?

Los Volcanes, sus cenizas y sus efectos.

Está aún reciente abril de 2.010 cuando el volcán Eyjafjallajökull generó tal nube de cenizas volcánicas que supuso un alto en la aviación europea durante varios días. Aviones con sus tripulaciones, pasajeros y carga quedaron varados en tierra.

Un volcán en sí mismo no plantea un problema para la aviación, pero sí el material que arroje el volcán en su erupción. Según el Observatorio Vulcanológico INGEMMET de Perú, “las erupciones volcánicas son el producto del ascenso del magma a través de un conducto desde el interior de la tierra. El magma está conformado por roca fundida, gases y cristales. Este material puede ser arrojado con distintos grados de violencia, dependiendo de la  composición química del magma, la cantidad de gases y en algunos casos por la interacción del magma con el agua”.

Si el magma no logra liberar los gases contenidos en la erupción, y acumula más presión, fragmenta el magma con gran energía y da lugar a erupciones explosivas. Los fragmentos emitidos por una erupción, se denominan piroclastos, y se les denomina ceniza cuando tienen menos de 2 mm de diámetro.

Estas nubes de ceniza pueden alcanzar grandes alturas y permanecer en el aire varios meses. Las cenizas se ven desplazadas por el viento y pueden alcanzar otras zonas geográficas a cientos y miles de kilómetros.

Sarychev Volcano | NASA
Volcán Sarychev (NASA)

La composición de las nubes de ceniza contienen elementos que causan daños severos sobre los motores de aviación por su condición de abrasivas. Estos compuestos se funden a temperaturas inferiores a las de operación del motor, derritiéndose en la sección caliente del motor y en las palas de turbina de alta presión y estator guía. Esto provoca una pérdida de empuje transitoria o incluso la parada de motor al reducir la presión del compresor y de la propia turbina. Los daños causados suelen ser permanentes e irreparables.

Otros de los daños que provocan las nubes de ceniza volcánica son las superficies de la aeronave y los parabrisas expuestos al rozamiento de las partículas de ceniza.

No existiendo duda sobre la severidad y seriedad de la situación, se impone la consideración de los siguientes aspectos para realizar un vuelo con seguridad: planificación, actualización de la información para la evitación y el entrenamiento de las tripulaciones en caso penetración inadvertida en una nube de cenizas.

Planificación.

Tras el incidente ocurrido por el B747 de BA en 1.982, la Organización de Aviación Civil Internacional (OACI) implementó un servicio por el que, a través de los avisos de una serie de centros de observación de cenizas volcánicas (VAAC). Estos 9 centros, distribuidos por diversas zonas geográficas, tiene la tarea de informar sobre la ubicación, nivel de vuelo de la nube y su movimiento estimado a través de SIGMET y mensajes de avisos de cenizas volcánicas denominados ASHTAM.

Información meteorológica con la observación de nubes de ceniza volcánica y representación en vuelo del piloto.

Por lo tanto, desde despacho de vuelos y, a la hora de planificar la ruta, tendrán en cuenta estos avisos. No obstante, y a pesar del esfuerzo en la monitorización del movimiento de la nube, la atmósfera juega siempre con algo de impredecibilidad. Esto supone que a la hora de planificar un vuelo los despachadores sean conservadores.

Evitación y documentación al uso.

Existen multitud de documentos para prevenir a los pilotos sobre las cenizas volcánicas y de los que los operadores aéreos pueden extraer información para elaborar procedimientos adecuados en sus manuales de operaciones.

Para el espacio aéreo oceánico del NAT (Atlántico Norte) se emitió temporalmente un NAT OPS Bulletin con motivo del volcán islandés en septiembre del 2.010.

Otras información de carácter más permanente es el doc de OACI 9974, el cual establece una guía para los operadores y las propias autoridades aeronáuticas para poder verificar que los primeros cuentan con unos procedimientos relativos a este aspecto.

Thomas J. Casadevall, escribió un artículo muy interesante en la Flight Safety Fundation que dejaré aquí para que lo podáis descargar. Expone un gráfico de los daños sufridos por el B747 de BA.

Otras dos organizaciones, no menos importantes por ser las últimas nombradas, son la CAA inglesa a través de su doc CAP 1236 (“Guidance regarding flight operations in the vicinity of volcanic ash”), y la NASA. Este último tiene un artículo sobre una prueba realizada en vuelo sobre un DC8 (“Engine Damage to a NASA DC-8-72 Airplane From a High-Altitude Encounter With a Diffuse Volcanic Ash Cloud”).

Imagenes de NASA.

The  NASA  DC-8  airplane,  a  highly  instrumented  research  platform  for  conducting  atmosphericscience  research,  inadvertently  flew  through  the  fringe  of  the  volcanic  ash  cloud  produced  by  theMt. Hekla volcano in Iceland. This encounter occurred in total darkness (no moon) in the early morningof February 28, 2000, during a ferry flight to Kiruna, Sweden.

El DC-8 de la NASA se encontraba equipado con un gran número de equipos e instrumentación para el studio atmosférico. Inadvertidamente se introdujo en una nube volcánica proveniente del volcán islandés Hekla. Este encuentro tuvo lugar de noche (sin luna) el 28 de febrero del año 2.000 mientras volaba hacia Kiruna, en Suecia. Tras el encuentro, la propia NASA realize una investigación y documentó los daños y experiencias en este mencionado documento.

Los propios manuales de los aviones arrojan muy poca información general, pero sí procedimientos al respecto de cómo evitarla en caso de encontrarse con una nube volcánica, información más específica de cómo identificar que se trata de ceniza volcánica si no hay visibilidad o durante la noche y como combatirla en caso de sufrir sus consecuencias, ya sean paradas de motor, indicaciones no fiables de velocidad o procedimientos de evasión. Esto nos lleva al último punto: el entrenamiento de las tripulaciones y los procedimientos.

Una vez dentro…

Febrero de 2.020, un Airbus A330-200 se encuentra iniciando el descenso al aeropuerto de Ciudad de México en un vuelo nocturno tras un vuelo tranquilo durante 11 horas desde Madrid. Al cruzar FL250, aparece algo de fuego de San Telmo en el parabrisas. Automáticamente la tripulación presta atención al radar. Pero no hay tormentas, lo que eleva el nivel de atención de los pilotos. Uno de ellos escudriña el cristal. Tras un minuto, un olor a azufre invade el cockpit junto con algo de humo. Alertados, los pilotos se ponen las máscaras de oxígeno y establecen comunicación entre ellos. Al segundo de hacerlo, uno de los motores falla y 10 segundos después, el segundo da más síntomas de fallo… Tras unos largos minutos un alto nivel de estrés, coordinación y gran trabajo de equipo, consiguen aterrizar felizmente con un motor en el aeropuerto de Toluca. Por suerte, esto fue una sesión de simulador.

camiseta aviación

Estar preparado para combatir las averías provocadas por volar dentro de una nube de cenizas volcánicas forma parte del entrenamiento de las tripulaciones de manera recurrente. Cada cierto tiempo es un ejercicio que se desarrolla con variedad de escenarios y situaciones posibles.

Una de las bases del entrenamiento y para el que las tripulaciones han de estar preparados es a reconocer los síntomas relacionados con el vuelo en cenizas volcánicas. Fuego de San Telmo, provocado por el rozamiento en el parabrisas, ciertos olores que se cuelan en el sistema de aire acondicionado del avión, como olor a azufre o eléctrico, incluso algo de humo. Además, las superficies de los bordes de ataque y entradas a los motores se cubren de un color anaranjado brillante… Estos efectos son muy llamativos visualmente, por lo que si no se conocen la causa, pueden distraer a la tripulación de las más que probables y dañinas consecuencias posteriores.

Reconstrucción del vuelo BA 9 (1.982).

En caso de detectar estos fenómenos durante un vuelo y asociarlos rápidamente al vuelo dentro de nubes de cenizas volcánicas, lo primero que indican los manuales de los aviones es invertir el rumbo y salir de la zona lo antes posible. Otro problema que nos podemos encontrar es la alta carga electrostática que penalice las comunicaciones y nos haga difícil comunicar.

Volar en estas circunstancias provoca daños a los sensores, por lo que los automatismos como los sistemas automáticos de empuje deben ser desconectados. Estos reciben señales erróneas de los sensores y su comportamiento se vuelve errático.

En cuanto al sistema de aire acondicionado, es conveniente aumentar el sangrado de aire incrementando el flujo de aire en cabina para evitar obstrucciones de aire en el motor, dándole mayor margen frente a un engine stall. Asimismo, conviene aislar las bodegas para prevenir avisos de humo en las bodegas por este fenómeno. Lo único que provocaría sería distraer a la tripulación con un fuego inexistente. Priorizar las tareas serias y reales resulta primordial.

Volviendo al motor, para alejarlo de las altas temperaturas a las que trabaja el motor, conviene reducir la potencia al mínimo posible. En algunos casos los mismos manuales recomiendan idle (ralentí). Los daños en el motor, son y será evidentes bajo estas condiciones y el fallo se puede producir en cualquier momento. En el caso de ocurrir, conviene esperar a estar fuera de la nube para intentar un re-arranque, ya que bajo estas circunstancias puede ocurrir dos cosas: daños severos del motor durante el arranque y provocar la inhabilitación permanente del motor lo que queda del vuelo. Si es posible, hay que contenerse y retrasar este procedimiento. Algo contra la naturaleza del piloto.

En la secuencia de gestión de emergencias durante el vuelo, el piloto ha de volar el avión como primer paso para la resolución de problemas. Es decir, poner el avión en su envolvente segura de vuelo. Luego navegar y dirigir el avión fuera de la nube y, por último, comunicar. Incidir en el primer punto cobra aún más sentido si tenemos en cuenta otra gran consecuencia ya mencionada: los datos obtenidos por las sondas de presión estática y dinámica utilizadas para calcular las velocidades y altitudes del avión serán erróneas, lo que provocará a su vez que las indicaciones presentadas al piloto no sean las correctas. Si el piloto las sigue, pondrá el vuelo en una trayectoria en que se vea afectada la seguridad. Es por ello que el piloto deba aplicar un procedimiento específico llamado “unreliable speed indications”, cuyo nombre puede variar según modelo y fabricante.

Entrenamiento, procedimientos y estudio.

Este procedimiento, familiarmente conocido como “USI”, viene determinado por comparar las fuentes de información, desechar la mala, y continuar volando mediante ángulos de ataque y pitch y potencia según unas tablas proporcionadas por el fabricante del avión. Un tipo de vuelo trabajoso. Y más aún si lo unimos a otros posibles fallos como los mencionados más arriba.

Comunicar es el último de lo puntos. Cuando has conseguido sacar el avión de peligro, llevarlo donde deseas y realizar los procedimientos que permiten la continuación segura del vuelo a un alternativo adecuado más próximo, hay que escribir… Uno de los puntos en los que inciden las autoridades es la de comunicar de manera eficiente quién, qué, cómo y dónde ha sufrido un encuentro de esta magnitud. Para ello existe un informe tipo que el piloto debe saber que existe y cómo emitirlo. El orden de la información cobra importancia para permitir la transcripción al sistema de difusión lo antes posible.

Conclusiones

Las nubes de ceniza volcánica han de ser monitorizadas globalmente, así como su evolución. Teniendo en cuenta las probabilidades existentes en la variación de su movimiento y niveles ocupados.

Por su composición, resultan altamente peligrosas para el funcionamiento de la aviación de manera segura, por lo tanto, los departamentos de planificación y despacho de vuelo han de optar por ser altamente conservadores a la hora de elegir las rutas más apropiadas y utilizar los reportes más actualizados existentes. Tanto los emitidos por los centros VAAC como por los pilotos.

El entrenamiento y la buena aplicación de los procedimientos son la última barrera a la que los tripulantes se tienen que enfrentar en caso de una emergencia como el vuelo en nubes de ceniza volcánica.

A pesar de todo esto, el número de incidentes o accidentes (sin heridos o fallecidos) es muy sensiblemente casi inexistente desde la implementación de los VAAC. Otro motivo más para reivindicar el avión como el medio más seguro de transporte.

Safe Place Program - Operation SafeHouse

PDC vs DCL

Recientemente se ha instaurado en algunos aeropuertos españoles otra vía mediante la cual obtener la autorización. Pero suscita algunas dudas y se confunde con la PDC o “Pre-departure Clearance”. En este pequeño artículo explicamos las diferentes formas que existen para obtener una autorización y sus diferencias.

Introducción al Datalink

Desde los primeros mensajes enviados mediante la red ACARS hasta el uso de aplicaciones datalink como el CPDLC, o el uso extensivo a otras aplicaciones relacionadas como las de ADS-C, están las peticiones de autorizaciones e información ATIS.

Estas últimas, ligadas a las aplicaciones ATS 620, 622 y 623, nos han permitido desde hace años obtener ciertos beneficios operacionales. Estas aplicaciones, hoy confundidas entre el enmarañamiento del mundo FANS, son anteriores y de hecho se consideran pre-FANS. Pero eso es otra historia… Centrémonos en las autorizaciones.

Las tres aplicaciones existentes son: OCL, D-ATIS y DCL. La primera sirve para pedir autorizaciones oceánicas, muy utilizadas en espacios aéreos oceánicos como el Atlántico Norte o el Pacífico; la de D-ATIS, ampliamente utilizada en numerosos aeropuertos del mundo, permite obtener la información ATIS de los aeropuertos sin necesidad de sacrificar un tripulante y una radio para obtenerla; y la tercera, DCL o autorizaciones mediante datalink.

Aplicación ATS 623.

La aplicación de las autorizaciones mediante datalink ofrece beneficios inmediatos. Por una parte permite reducir la sobrecarga del controlador que otorga estas autorizaciones, gestionándolas de manera más eficiente. También reduce la carga de trabajo del piloto, de manera que este no necesita estar escuchando la frecuencia constantemente con el dedo en el ptt (push to talk) como si de un duelo de pistolas se tratara, y dedicarse a sus tareas de preparación del vuelo con mayor atención una vez haya acusado recibo de la autorización correspondiente. Sin duda, otro de los puntos de mejora, es la disminución de congestión en la frecuencia de VHF dedicada a las autorizaciones, evitando además, malentendidos o errores en la frecuencia.

Implementaciones

Hay tres implementaciones, o vías para obtener las autorizaciones mediante datalink: CPDLC-DCL, DCL y PDC. Comencemos aquí a ver las diferencias entre ellas.

En Estados Unidos, la FAA, ha implementado este servicio a través de la utilidad FANS 1/A, de manera que el piloto ha de realizar un logon en la parte FANS de su equipo de comunicaciones datalink, conocida como ATS Notification Facilities (AFN) introduciendo las letras “KUSA”. El propio sistema gestiona el logon y relaciona la matrícula del avión con el plan de vuelo. Tras un tiempo, llegará la autorización en forma de mensaje CPDLC. Tras esto, y una vez iniciado el vuelo, será el propio ATS “KUSA” el que se desconectará.

Ejemplo de autorización mediante FANS CPDLC-DCL de «KUSA».

En cuanto a DCL, también llamado DDCL (Datalink Departure Clearance Service), el piloto, a través de la interface de la aplicación ATS 623 (DCL) que tiene el avión rellena las casillas correspondientes y envía la solicitud de autorización directamente al controlador de delivery. Éste la gestiona y contesta directamente al piloto con la autorización mediante el mensaje correspondiente con la autorización y la frecuencia de ground para poder pedir autorización de rodaje o retroceso (retroempuje en Sudamérica). Utilizando el servicio de DCL, el controlador no necesita ninguna confirmación oral del piloto y, una vez el piloto envíe el acuse de recibo de la autorización, no necesitará llamar a delivery antes de poner en marcha. Para que el avión pueda utilizar este servicio, debe tener contrato de datalink con los proveedores Rockwell Collins, SITA o ARINC y la compañía ha de contar con cursos de formación.

Ejemplo de solicitud de autorización de salida y recepción de la DCL.

La cosa cambia sensiblemente con el PDC. A pesar de que el piloto puede utilizar la misma vía para pedir la autorización, la aplicación ATS 620/622/623, como en la DCL, el proceso que sigue es distinto.

El término Pre-Departure Clearance se utiliza para describir las implementaciones de Estados Unidos, Canadá y Australia, principalmente. En estas implementaciones, el piloto puede solicitar la autorización vía ACARS mediante el uso de la aplicación ATS 623, como hemos mencionado, pero no es el único medio posible. Este sistema permite pedir la PDC a aviones que carecen de ACARS y la solicitud se envía desde la oficina de operaciones de la compañía. La solicitud, no va directamente al controlador como en las DCL sino que el mensaje es enviado al AOC (Airline Operations Center) y es este Airline Host el que reenvía la solicitud al controlador. Cuando el controlador envía la autorización siguen el mismo camino de vuelta y es las aerolínea la responsable de que llegue al piloto. O bien mediante mensaje ACARS, o bien mediante la impresión del mensaje en la misma puerta de embarque u oficina de operaciones (sobre todo para aviones sin ACARS). Para habilitar la PDC, la aerolínea ha de estar “suscrita” al sistema.

Ejemplo de PDC. Algunas aplicaciones como Foreflight permiten esta utilidad incluso a través del teléfono móvil o Ipad.

Dado que la autorización es enviada al operador, el piloto ha de llamar a la frecuencia de delivery para confirmar que ha recibido la PDC correspondiente. Para ello, el piloto deberá mencionar en la llamada inicial que ha recibido la autorización «PDC received» e incorporará unos dígitos asociados a su autorización, si fuera requerido. De esa manera, el controlador sabrá que es la correcta. Por tanto, no evita el uso de la frecuencia de delivery al contrario que sucedía con la DCL.

Como información añadida, antes de realizar una solicitud de autorización, es necesario consultar la información del aeropuerto, pues algunos requieren añadir algún tipo de información adicional como nivel de vuelo inicial requerido, single engine taxi operation o souls on board, por ejemplo. 


FINANCIA NUESTRA WEB COMPRANDO UNA CAMISETA DE AVIACIÓN COMO LA DE LA FOTO

Como combatir el hielo en la Aviación general ligera.

Hace poco escribía un artículo sobre la importancia de la indicación de la temperatura en varios aspectos del vuelo. Una de las razones era el hielo y su prevención. Descubramos en éste artículo cuales son las herramientas de las que dispone un piloto de aviación general ligera para defenderse contra este elemento.

El contexto.

Durante mi carrera profesional he tenido la oportunidad de descubrir la operación invernal en todo su esplendor. Operar en condiciones de engelamiento moderado, pistas y calles de rodaje con hielo y nieve, con el tiempo dan la experiencia suficiente para conocer dos cosas básicas: dónde se encuentran los límites razonables y el conocimiento para poder enfrentarse a estos elementos con seguridad.

Mi labor como instructor en la aviación general ha tenido lugar siempre en la zona centro de España. Lleva implícito el encontrarse con una gran variedad de fenómenos meteorológicos que, lejos de ser extremos, el piloto tipo de aviación general de la meseta no está muy expuesto a la operación invernal. Como lo está un piloto que aprende a volar en Alaska o en Noruega, por poner un par de ejemplos. En España se vuela principalmente con “sol y moscas”.

La baja exposición a éstos fenómenos durante el aprendizaje genera en el piloto recelo a encontrarse con el fenómeno del hielo, produce inseguridad y miedo. Lejos de pretender animar a la gente a volar en condiciones que puedan suponer un riesgo, sí deseo darles herramientas para poder combatirlo si se ven envueltos en los elementos del frío invierno. O verano en el hemisferio sur. Nuestros amigos del club de vuelo de Ushuaia bien familiarizados están.

¿Qué hace el hielo sobre el avión?

Cuando el avión encuentra hielo durante el vuelo, se forma sobre las superficies de sustentación, desde los bordes de ataque hacia atrás, en los parabrisas y en las antenas.

El hielo sobre la superficie del ala tiene dos efectos muy perjudiciales: Por un lado pérdida de sustentación que provoca un aumento en la velocidad de pérdida y, por otro, el gran peso que supone el hielo sobre la aeronave. Es decir el margen de seguridad del vuelo se vuelve muy estrecho.

imagen de www.weather.gov

Además, los motores de carburación tienen mayor exposición a la creación de hielo en la parte de la mariposa pudiendo provocar un fallo de motor. Es decir, unido a la disminución en la capacidad de sustentar tenemos una merma en la parte propulsiva.

El hielo provoca bloqueos en las tomas de Pitot-estática. Por su disposición, bloqueos del tubo Pitot son los más habituales. Esto requiere que el piloto vigile bien los instrumentos de vuelo y, si durante el vuelo, sufre una pérdida de velocidad repentina de 20 kt, puede ser debido a éste fenómeno. La calefacción al Pitot debe ser utilizada adecuadamente. Hablaremos de ello más adelante.

Los efectos sobre el parabrisas son menos perjudiciales salvo por la visibilidad. Sin embargo, son el lugar en los que primero se forma. Tomémoslo como una ventaja. Dado que es lo más expuesto a la vista del piloto es una manera de avisar al piloto que se está comenzando a formar hielo y debemos tomar acciones lo antes posible. En los vuelos nocturnos conviene llevar una pequeña linterna para poder ir vigilando de vez en cuando estas partes.

Las antenas de los aviones son por construcción muy pequeñas y estrechas y, cuando se forma hielo en ellas, quiere decir que la situación es preocupante puesto que la cantidad de hielo formado por minuto es elevada. Conviene tomar acciones inmediatamente.

Como vemos el hielo es algo a lo que debemos prestar atención. Pero, como siempre hay diferentes niveles.

La prevención.

El conocimiento en aviación previene al piloto de que pueda verse envuelto en una situación indeseada. En muchos manuales de vuelo vienen explicados procedimientos específicos de su avión para operar en determinadas condiciones climáticas.

La planificación de la ruta durante el vuelo es un factor fundamental. En algunos países la altitud máxima de vuelo está muy determinada por la altitud de la isocero. Como ya se mencionó en un artículo anterior, el hielo se puede formar a temperaturas próximas a los cero grados. Sin embargo también con temperaturas positivas si la humedad en el aire es mayor. Por lo tanto deberemos planificar nuestros vuelos por debajo de la altitud a la que se encuentre la isocero si hubiera nubes en nuestra ruta.

Las flechas rojas indican el recuadro con la altitud de la isocero en cientos de pies.

La mejor prevención es, sin duda alguna el hangar. Y en segundo lugar disponer de fundas para el avión. Además, una funda para el Pitot resulta casi imperativo siempre. Si el avión descansa a la intemperie en las frías plataformas de los aeropuertos no iba a ser menos.

En estos días fríos de invierno, incluso cuando no hay nubes, durante la mañana nos podemos encontrar el avión con escarcha. ¿Podemos salir con escarcha en el plano? La escarcha es un fenómeno típico del invierno. Si las capas bajas, en contacto con la superficie tiene cierta cantidad de humedad y las temperaturas bajan por debajo de 0ºC, subliman y se forman en las superficies del avión. Muchas veces, al salir el sol, si la escarcha es ligera, se derrite antes de poner en marcha el avión. Si es más dura y cuesta quitarla con la mano, hay que utilizar otros métodos para retirarla. Entre los métodos más apropiados para quitarlo es disponer de una botella de glicol con difusor para poder rociar las superficies. El método de rociado es desde los borde de ataque de los planos hacia atrás, y desde el encastre y hacia la punta del ala o del estabilizador horizontal. El fuselaje, al no tener apenas cargas aerodinámicas, no es necesario el rociado. Si no se dispone de glicol, un trapo o un rascador funcionará bien. Sin embargo, NUNCA hay que utilizar agua caliente, pues al contacto con la superficie y las bajas temperaturas puede agravar el problema aún más.

Habitualmente la escarcha permite distinguir bien las marcas de las superficies del avión y se desprende con facilidad. Quitarla es cuestión de cinco minutos y no requiere esfuerzo alguno.

Si el avión se hubiera cubierto de nieve y debajo de la nieve se hubiera quedado algo de hielo, o nieve congelada, es necesario realizar un procedimiento de limpieza más exhaustivo. No sólo sobre la superficie sino en los herrajes, alerones y superficies móviles, así como las antenas y las entradas de motor y de aire. Lo que nos lleva a las precauciones del motor…

Los motores de pistón de la aviación general disponen de una amplia variedad de aceites que trabajan en rangos de temperaturas muy amplio por lo que no debe ser problema alguno. Lo mismo ocurre con el combustible. Si el combustible es combustible de aviación 100LL, su temperatura de congelamiento se encuentra a -58º C; y si se trata de JET A o JET A1 para aquellos de motores Diesel, el punto de congelamiento se encuentra a -40º C y -47º C respectivamente… No obstante, en este punto cabe destacar la importancia del drenar los tanques de combustible. Los aviones no tienen sistemas de combustible con intercambiadores de calor por lo que si la temperatura es inferior a 0º C, el agua de los depósitos puede provocar cristales de hielo que pueden bloquear filtros.

Muchos fabricantes publican en sus manuales procedimientos específicos para operaciones a bajas temperaturas y limitaciones. Cirrus, por ejemplo hace varias recomendaciones en su manual a las que no debe soslayarse si se dan estas circunstancias. El SR20 no está recomendado su operación a menos de -23º C salvo que realices una modificación (Winterization Kit).

Durante las puestas en marcha es recomendable girar la hélice unas cuantas veces para permitir que el aceite fluya por las partes necesarias y no le cueste a la batería demasiado esfuerzo durante el arranque. Cirrus, también dice que si el avión ha estado a temperaturas inferiores a -7º C que se haga este procedimiento. Arrancar con una fuente auxiliar de tierra ayuda a preservar la batería durante el arranque. No es necesario que el avión se encuentre a tales temperaturas. Muchas veces le cuesta cuando la temperatura está próxima a 0º C.

Sistema de fabricación casera para calentar los motores mediante aire caliente.

No obstante, si el arranque no es satisfactorio en los primeros intentos, observad las bujías. Puede que estén congeladas y el motor necesite de un calentamiento externo. Aunque esto no es nada habitual en la península ibérica, he podido ver en otros países como Polonia o Suecia, que calientan el motor eléctricamente o le soplan aire caliente con un calentador de grandes dimensiones.

No hay que olvidar que las puestas en marcha con el motor a temperaturas muy bajas son dañinas a largo plazo para el motor. El motor contiene diferentes tipos de metales y el coeficiente de expansión térmica de los materiales hace que, por ejemplo el aluminio se expanda a mayor régimen que el acero, es decir, los cilindros de aluminio se encogen dentro de los cilindros hechos de acero aumentando la distancia de junta entre ellos aumenta, pudiendo dañar los cilindros a largo plazo.

Hay algo de hielo en…

El artículo está planteado desde el punto de vista de la aviación general ligera. Si bien es cierto que casi toda ella se desarrolla en condiciones de vuelo visual, el hielo es potencialmente peligroso en aquellos que vuelan en IFR y se puedan encontrar en condiciones IMC. No obstante, si la humedad es apreciable, incluso en VMC, la formación de hielo en ciertas partes es posible. Por ejemplo, en el carburador. Hablemos de la calefacción al carburador.

 El uso correcto del CARB HEAT ha suscitado dudas en muchos pilotos. Su uso viene bien determinado en los manuales de los aviones. Sin entrar demasiado en cómo está diseñado un carburador, podemos indicar que se trata del elemento encargado de preparar la mezcla de aire y combustible. Existe una válvula con forma de mariposa que regula la cantidad de aire que entra. Posteriormente un estrechamiento (garganta Venturi) que disminuye la presión del aire aumentando la velocidad del aire. Esta depresión atrae el combustible para la mezcla.

camiseta aviación
Compra aquí tu camiseta de Aviation Design.

Especialmente cuando la mariposa está abierta, el aire que entra, al expandirse se enfría, si la humedad es suficiente, la probabilidad de formarse hielo en el carburador aumenta. Se ha comprobado formación de hielo cuando la humedad relativa es mayor del 50% y la temperatura ambiente oscila entre -5º C y 30º C. Sí. Positivos.

Para poder utilizar el CARB HEAT correctamente hay que tener en cuenta lo siguiente. Cuando se enciende, la entrada de aire al carburador pasa junto al colector, donde se calienta. Al calentarse, el aire pierde densidad y puede hacer que el motor pierda hasta un 10% de potencia.

Si durante el vuelo, es necesario su uso, encender la calefacción completamente. Nunca en posiciones intermedias. Los cristales presentes en el aire pasan a estado gas directamente sin suponer peligro alguno para el motor. Si en algún momento no se selecciona completamente la calefacción al carburador (“HOT” en algunos modelos CESSNA), puede ser suficiente para derretir los cristales de hielo, pero el agua no se gasifica y penetra en el sistema en formas de gotas de agua, siendo susceptibles de formarse hielo en la mariposa.

Sin embargo, aunque el motor sea el mismo en las Cessna que en las Piper, su uso es diferente. En la Cessna, la entrada al carburador es frontal y entra al carburador situado debajo del motor. En las Piper el carburador está localizado arriba y ligeramente por encima del motor, permitiendo al aire pasar entre las cabezas de los cilindros, precalentando ligeramente el aire antes de entrar en el carburador. Es por ello que las Cessna suelen tener mayor propensión a formarse hielo en el carburador, sobre todo en descensos prolongados. Por ello, si observamos las checklist de cada avión, veremos como el fabricante Cessna incluye este item en su cheklist de descenso y antes de aterrizar, mientras en Piper sólo “as required”.

Como se ha comentado anteriormente, el parabrisas en uno de los primeros  lugares donde se puede formar hielo, pero no el más peligroso. Tan sólo reducirá algo la visibilidad frontal. Algunos aviones disponen de un pequeño visor montado sobre el cristal, en el lado del piloto que se caliente para evitar que se forme hielo en esa parte. Pero si comienza a formarse hielo en el parabrisas, puede que en el borde de ataque del ala comencemos a ver la superficie con algo de “brillantina” o ya algo de hielo formado sobre ella. Para combatir este tipo de hielo algunos fabricantes ofrecen distintos sistemas para prevenir la formación de hielo, o bien sistemas de deshielo.

Un sistema muy recurrido en los aviones de pistón y generalizadamente en los motores de turbina es el sistema de botas o zapatas neumáticas. Este tipo consiste en montar en los borde de ataque el ala, estabilizadores de la cola y, no siempre, en el borde de ataque de las hélices unas zapatas de caucho formando tubos en su interior. Por estos tubos se les  hace pasar aire a presión que hincha las zapatas en ciclos de entre 1 minuto y 3 minutos para romper el hielo que se hubiera podido formar sobre estas superficies. La presión del aire normalmente se obtiene de la bomba de vacío en motores de pistón y de aire sangrado de alguna etapa del compresor de alta en los aviones turbohélice.

Sistema de botas neumáticas de borde de hélices y borde de ataque. (foto: Iceshield)

Es un sistema relativamente sencillo y barato de instalar. Sin embargo, hay que ser consciente de su funcionamiento y no precipitar su activación. Cuando se forma hielo, la tendencia es ir a conectar el sistema. Si se ha formado cierta cantidad de hielo y lo activamos en el momento adecuado, romperá el hielo cada vez que se forme. Sin embargo, si activamos un ciclo en el que las zapatas se hinchen y deshinchen más rápidamente que la propia formación del hielo, o bien, nos precipitemos en su activación, el hielo se comenzará a formar rodeando la zapata en su máxima amplitud de hinchado, de manera que el movimiento de la zapata no será capaz de romper la capa de hielo. En este momento, el sistema dejará de ser útil y la cantidad de hielo acumulado necesitará de medidas inmediatas.

Pasemos a sistemas más modernos y de actualidad: El TKS. Este sistema, que lleva aplicándose en aviones de pistón de última generación en los últimos años. Las botas han sido sustituidas por este sistema.

En 1.942 el Ministerio de la guerra inglés formó una asociación TKS ltd. con la unión de tres empresas:  Tecalemit, Kilfrost y Sheepbridge Stokes. Kilfrost ya producía fluidos para de-icing en aquella época.

En la imagen se aprecian la disposición de los agujeros del borde de ataque de un ala. (Foto de TKS)

El sistema consiste en un panel de titanio con agujeros numerosos agujeros de tamaño milimétrico taladrados a láser a través de los cuales, mediante una bomba eléctrica, expulsa un líquido que evita que el hielo se adhiera a la superficie. Dicho líquido trabaja incluso a temperaturas muy por debajo de 0º C, habiéndose demostrado hasta los -60º C. Esto supone que un avión ligero pueda ser certificado FIKIS (Flight Into Known Icing Conditions). Sin duda un nivel de protección muy elevado. El sistema es muy sencillo y sin añadir peso a la estructura de la aeronave, de fácil mantenimiento y muy efectivo. Hacen de este sistema de los mejores diseñados para la aviación general.

Conclusiones

El hielo es un elemento que eleva el nivel de riesgo en el vuelo entre nubes a la aviación ligera por los peligros que implica y por la poca defensa con la que cuentan estas aeronaves.

Es evidente que los pilotos acostumbrados a volar un ambiente y cultura en la que conviven con hielo habitualmente, acaban por conocer mejor sus límites. Sin embargo, para un piloto que vuela en la península ibérica es un elemento con el que se trata poco por dos motivos: No se instruye adecuadamente a este elemento por un lado y, por otro no existe un gran número de vuelos bajo estas condiciones.

Bajo esta premisa, el piloto debe agarrarse al conocimiento, la prevención y el uso de los sistemas de que disponga de manera adecuada.

La utilidad de la temperatura

En la cabina, un piloto tiene varios instrumentos dedicados al vuelo. Los instrumentos proveen al piloto de información y, en función de la importancia que tenga, se le presenta de un modo más o menos visible. Hoy hablamos de la indicación de temperatura, un parámetro de escasa presencia visual, pero de mucha utilidad para el vuelo.

Cuando Charles Lindberg se lanzó a cruzar el Atlántico norte en un monomotor, estaba muy concienciado sobre las condiciones en las que iba a realizar el cruce. Su traje, como no podía ser de otro modo en aquellos tiempos, estaba concienzudamente preparado para combatir el frío. También sabía que era muy probable, como así sucedió, que encontraría hielo durante el vuelo. Sin embargo, la parca instrumentación que incorporaba el Spirit of Saint Louis no incluía un indicador de temperatura exterior. Dicho instrumento le habría sido muy útil para prever condiciones de hielo antes de formarse y poder tomar así las acciones oportunas.

Hoy en día la normativa europea EASA requiere la obligatoriedad de equipar los aviones con un indicador de OAT (Outside Air Temperature) en todas aquellas operaciones comerciales (normativa CAT) y no comerciales (Tanto NCC como NCO), que se realicen en IFR (Instrument Flight Rules). Y tiene mucho sentido.

En la aviación general ligera era habitual contar con este instrumento alejado de la vista del piloto, colocado principalmente en la ventana o en la parte superior del cristal frontal; sin embargo, gracias a los sistemas modernos de aviónica esta indicación comienza a estar ahora integrada en las pantallas de instrumentos del panel frontal.

Instrumento de OAT de la Piper PA-38-112 Tomahawk e indicador de temperatura en Cirrus SR22T con aviónica Avidyne.

Los aviones reactores y de mayor tamaño, disponen de información de temperatura en diversos puntos del avión, tanto en el fuselaje exterior como en los depósitos de combustible, muy vulnerables al frío debido a la formación de parafinas con el hielo, que pueden obstruir los filtros y provocar paradas de motor en vuelo.

Previsión de engelamiento.

El hielo es uno de los mayores peligros a los que se enfrentan los pilotos durante la operación, sobre todo en aquellos aviones que, o bien no disponen de medios para eliminarlo de la estructura o éstos son limitados, como los aparatos de pistón y otras estructuras menos aerodinámicas.

En estos aviones, antes del vuelo se vigila mucho en los mapas significativos a qué nivel se encuentra la isocero, es decir, la altitud a la cual la temperatura es de 0º C ya que, a ese nivel, si existe humedad visible y nuestro indicador de temperatura ronda los cero grados (tanto positiva como negativa), las posibilidades de formación de hielo son muy altas.

Hay zonas donde las posibilidades de encontrar hielo son aún mayores. Cuando se vuela en zonas costeras o en las zonas a barlovento de los sistemas montañosos, al incrementarse la humedad, el engelamiento que se pueda producir es más severo. El tipo de nubes influye significativamente. Se puede realizar un vuelo en nubes en condiciones muy frías y encontrar hielo con temperaturas muy por encima de los 10ºC. En los aviones de motor de pistón, se puede producir en la boca de entrada del propio motor o en los carburadores (si disponen de estos), concretamente en la válvula de mariposa, donde el aire se expande y se enfría, pudiendo condensarse si la humedad es suficiente. En estos casos es posible la formación de hielo con temperaturas positivas.

Dado lo anterior, ¿en qué rango de temperaturas podemos encontrar formación de hielo? Un factor distintivo que el piloto debe tomar en cuenta es la humedad. Sin humedad no puede haber engelamiento. Según libros y manuales de los fabricantes de aviones, se debe prestar atención en cuanto exista humedad visible y la temperatura sea inferior a +10ºC. El rango en el que mayor probabilidad de engelamiento encontraremos, será entre 0º y -20ºC. Por otra parte, a temperaturas inferiores a -40ºC es muy difícil encontrar hielo.

Si nos encontramos volando en nubes y en rango de temperaturas en las es posible la formación de hielo, la velocidad de formación será muy variable en función del tipo de nube. En estos casos, el piloto podrá evitarlas descendiendo por debajo de la isocero, o bien ascendiendo por encima de las nubes si éstas son muy estratificadas o de niebla, pues esto puede ser síntoma de inversión de temperatura. No siempre descender es la solución correcta.

Acumulación de hielo claro en un BAe146 y un Jetstream J31 (Fotos: Think Ice de BAe Systems)

En los aviones reactores, además, interviene un factor más: el calentamiento cinético. Es decir, ante velocidades superiores a 730 km/h, las superficies del avión sufren un calentamiento por el roce rozamiento en el aire. El trabajo realizado por las fuerzas de fricción se transforma en calor. Es por ello que este tipo de aviones disponen de un indicador de temperatura denominado TAT (Total Air Temperature).

Si bien la OAT, también conocida como SAT (Static Air Temperature), es la temperatura exterior sin perturbar, la TAT es la suma a la SAT/OAT más el calentamiento adiabático que experimenta el aire debido al efecto de compresibilidad.

La aparición de esta medida de la temperatura ayuda al piloto a discernir en cuál de las dos debe fijarse a la hora de establecer las medidas para evitar el hielo o activar los sistemas de prevención. Por ello, en tierra y bajas velocidades el piloto utilizará la OAT y, en vuelo en crucero o a niveles altos, utilizará la TAT.

La TAT es una herramienta muy útil para poder prever los peligrosos cristales de hielo a altos niveles o HLIC (High Level Ice Crystals), factor que influyó en el accidente del A330 de Air France AF447 al atravesar la Zona de Convergencia Intertropical (ITCZ) en el Atlántico Sur.

Restos del A330 de Air France (Crédito: Fuerza Aérea de Brasil/Agencia REUTERS)

Es al atravesar esta zona donde las probabilidades de encontrar cristales de hielo a altos niveles, es muy probable. Para poder preverlos, el piloto ha de apuntar en su plan de vuelo las temperaturas TAT que va encontrando a lo largo de la ruta ya que, si por un casual observa un incremento de entre 10 y 20 grados de la TAT, la probabilidad de encontrarse cristales de hielo aumenta, al ser partículas de hielo muy pequeñas que generan fricción en las superficies del avión. De hecho, es común encontrar Fuego de Santelmo por esta causa, incluso hasta 20 NM fuera de nubes convectivas en estado de disipación.

Turbulencia asociada a la corriente en chorro.

En su día, Edgar nos escribió un gran artículo sobre la corriente en chorro (Jetstream), fenómeno con el que el lector seguro que ya se encuentra familiarizado y sobre cómo afecta a la aviación. No obstante, disponéis del citado artículo en la página web.

Se pueden observar las corrientes en chorro y las áreas de turbulencia asociadas en línea discontínua.

Los vuelos realizados entre Europa y América se suelen realizar en general a latitudes más bajas para poder evitar “los chorros”. En el hemisferio norte, aquellos realizados de oeste a este se intentan planificar a latitudes más altas, donde sus vientos, al ser de componente en cola, resultan favorables para la operación, siendo en el hemisferio sur, en sentido contrario. Sin embargo, existe una contrapartida: La turbulencia asociada.

El Jetstream, tiene una forma serpenteante, tanto en niveles como en latitudes. Su estructura responde a varios cientos de kilómetros de ancho, un espesor de varios kilómetros y una longitud de miles de kilómetros. La turbulencia asociada suele encontrarse en zonas determinadas. ¿Pero cómo determinar en qué zona nos encontramos?

Corriente en chorro entrando en la imagen desde el lector.

Por su estructura, y poniendo siempre como ejemplo la corriente en chorro típica del hemisferio norte, la turbulencia se encuentra principalmente a la izquierda del chorro, debajo y encima de la tropopausa y a la derecha del chorro debajo de la tropopausa, siendo algo más ligera por debajo de él. Justo estas zonas se corresponden con variaciones de temperaturas relativas, siendo bajas donde mayor probabilidad de turbulencia hay y con aire relativamente cálido en las zonas donde menos probabilidad de turbulencia hay. Si el piloto observa variaciones de temperatura descendentes, es posible que el chorro esté desplazándose hacia el norte o hacia arriba, por lo tanto, puede prever turbulencia o tratar de evitarla si se encuentra en ella. La variación de temperatura suele ayudar para localizar en qué sector del chorro se encuentra el avión y lo más fácil, dado lo plano del chorro, es evitarla ascendiendo, o descendiendo un par de niveles, aunque en ocasiones un pequeño desvío de un par de millas, puede paliar la turbulencia.

El combustible, mejor calentito.

El vuelo en reactores, y más aún si se realiza a latitudes elevadas, tiene como peculiaridad que hay que tener en cuenta la limitación del punto de congelación del combustible. Un avión reactor suele volar a niveles en o por encima de la tropopausa, lo que implica que las temperaturas exteriores rondan los -56ºC. En contraposición, el combustible típico de los aviones reactores suele ser el JET A1 o JET A, cuyas temperaturas de congelación son de -47ºC y -40ºC respectivamente. Los pilotos suelen tener un indicador en cabina de la temperatura del combustible en los depósitos exteriores de los aviones, más expuestos a las bajas temperaturas. Aunque los aviones tienen un sistema mediante intercambiador de calor para aumentar la temperatura del combustible, si las temperaturas exteriores son extremadamente bajas, puede comenzar a convertir el combustible en una especie de parafina viscosa. Este indicador, en algunos aviones como el A330, avisa siempre a -37ºC, próximos a los -40ºC del JET A, más restrictivo que el JET A1, que aguanta temperaturas más frías antes de empezar a congelarse.

Sistema de combustible del A350. Se puede observar la temperatura en los tanques de combustible (rodeado en color rojo).

Monitorizar esta temperatura en vuelos a Asia o Norteamérica, sobre todo en invierno, es imprescindible para tomar medidas. La más efectiva es mezclar el combustible enfriado de los tanques exteriores con el más cálido de los centrales, ya que descender o acelerar para aumentar la TAT suele ser muy contraproducente en vuelos de largo alcance por el gran incremento en el gasto de combustible.

La temperatura como medida de performance.

La temperatura es un factor primordial que permite al piloto conocer las actuaciones de su avión.

Si bien antes de despegar y aterrizar, este parámetro resulta imprescindible en los cálculos de performances, en vuelo también debe ser tenido en cuenta.

Los pilotos de los aviones reactores y más aún los de largo radio llevan grabado a fuego la búsqueda del nivel de vuelo óptimo. Aquel que les permita un mayor alcance con el menor gasto de combustible. O lo que es lo mismo, el mejor alcance específico (Specific Range o SR).

Dicho nivel óptimo viene determinado por la temperatura para un peso dado, lo que implica que un aumento de la temperatura supondrá un descenso de dicho nivel, y más crítico aún, del nivel máximo para un peso determinado. En aviones de mayor peso, y menos aerodinámicos, como el A340, el cruce por la ITCZ suponía muchas veces un factor determinante para establecer el nivel del cruce, pues atravesar el ecuador implica un aumento de la temperatura, reduciendo el nivel de vuelo máximo recomendado sensiblemente. Por lo tanto, la temperatura merece una atención especial en estos casos.

El Mach Limit (pérdida por alta velocidad) y el Stall Limit (Pérdida por baja velocidad) dependen de la temperatura. Gráfico conocido como «Coffin Corner» o rincón del féretro. (Foto de una tabla de performance del U2 del Departamento de Defensa de los Estados Unidos)

Si nos ceñimos a las aeronaves ligeras, también tienen niveles óptimos en los que tienen mejor alcance específico. Los motores atmosféricos tienen un mayor consumo cuanto más alto vuele el avión. Por otra parte, cuanto más alto vuele, mayor velocidad verdadera (TAS) tendrá ya que, a mayor altitud, menor densidad del aire. Es decir, aunque la velocidad indicada (IAS) es fija, la real dependerá de la densidad del aire y por tanto de la altitud. Como ya hemos dicho, cuanta más altura, mayor TAS. Así, estableciendo un compromiso entre el consumo del motor y la velocidad encontraremos el nivel óptimo, normalmente entre 5.000 y 8.000 pies de altitud. ¿Pero cómo determinamos la TAS?

Algunos anemómetros típicos de las Piper, Cessna o Socata, llevan una banda móvil integrada en la parte de las velocidades. Así, al girar la parte móvil de la escala obtenemos una correlación entre la altitud a la que volamos y la temperatura exterior. Al mover la escala, la aguja del anemómetro indicará sobre esta escala la velocidad verdadera y la indicada. Muy útil para replanificar los tiempos entre tramos, si difieren de lo planificado en tierra.

Obsérvese la banda móvil de color blanco. La parte inferior es la resultante de alinear el desvío de la ISA con la altitud de presión de la parte superior.

Como habéis podido comprobar, la temperatura es un parámetro que nos puede ayudar a mejorar la seguridad del vuelo, la eficiencia y la confortabilidad. Prestar atención a su evolución nos permite prever con gran acierto situaciones que de otra manera, nos provocarían desconcierto o sorpresa, ayudándonos a establecer una conciencia situacional correcta en zonas como los trópicos, donde el conocimiento de la temperatura puede resultar fundamental para optimizar las performances y minimizar el riesgo operacional.  


ENTENDIENDO LOS MODELOS TEÓRICOS DE SEGURIDAD OPERACIONAL

Los modelos teóricos de CRM están muy bien sobre el papel, pero en este artículo el Comandante y facilitador de CRM Andrés Díez Moro, nos explicará de manera clara y efectiva su practicidad en la operación diaria los modelos de Reason, TEM y EBT.

INTRODUCCIÓN.

Cualquier modelo teórico emanado del CRM (Crew Resource Management),  tiene como objetivo ofrecer herramientas a las organizaciones y por ende a las tripulaciones, para garantizar la seguridad de las operaciones aéreas, partiendo de la mejora de la actuación humana en el desempeño de su tarea.

 De este modo, han ido naciendo progresivamente diferentes modelos teóricos vinculados al factor humano (FFHH), que no siempre han sido  entendidos como herramientas sumamente prácticas para el desarrollo de la seguridad, al no haber conseguido ser trasladadas a la mentalidad de los pilotos y las organizaciones aéreas de manera consistente, durante  la ejecución de la operación diaria. Nos estamos refiriendo a los modelos :

REASONEl modelo analítico de Los famosos quesitos agujereados, basado en el concepto de amenaza asociada a un contexto operacional.

TEM (Threat and Error Management). Modelo de gestión de amenazas y errores por parte de la tripulación , basado en la identificación de amenazas y corrección del error.

EBT  (Evidence based Training). Modelo de entrenamiento basado en el desarrollo de competencias.

Todos ellos concebidos para optimizar la respuesta de las tripulaciones ante amenazas y para entender además el tipo de amenazas que nos afectan en función del contexto organizativo y operacional. Resulta por tanto, de mucho valor, para integrar los 3 modelos en nuestra operación diaria, hacer una labor previa de análisis del entorno coperativo y organizacional en el que nos movemos, con el fin de identificar a que tipo y nivel de riesgos estamos expuestos diariamente y qué herramientas tenemos para gestionarlos.

Es nuestra intención en nuestro análisis, tratar de convencer a cualquier profesional de la aviación de la absoluta trascendencia que tiene la integración de estos tres modelos tanto en el diseño de la operación como en la conducta operacional de las tripulaciones, para poder ofrecer una respuesta eficaz, estandarizada  y sistemática ante la gran variedad de amenazas que se convierten en peligros si no son identificadas y tratadas adecuadamente.. Para ello vamos a penetrar en el corazón de los citados modelos e intentaremos extraer la savia que nos permita, en primer lugar, interrelacionarlos y en última instancia, integrar sus objetivos en nuestra respuesta operacional diaria, con el único objeto de contribuir a la seguridad y eficiencia que deben caracterizar a las operaciones de vuelo en cualquier contexto, ya sea de aviación deportiva, profesional, de aerolínea, o en la instrucción y entrenamiento de cualquier escuela de vuelo.

El modelo Reason (analítico)

El modelo del queso Suizo de Reason es un modelo ANALÍTICO desarrollado por James T. Reason en 1990, para estudiar la causalidad de los accidentes, que van siempre precedidos de una sucesión de errores encadenados (flechas) que van agujereando las barreras defensivas (láminas de queso) que cada sistema diseña para evitarlos. La idea general que pretende proyectar este modelo es la de evitar exponer la seguridad de la operación a que el azar permita que la comisión de errores no corregidos por parte de los sucesivos actores de la cadena operacional, desemboque en un accidente.

 Para ello, debemos hacer un ejercicio de reflexión respecto a qué tipo de organización sustenta nuestra actividad, qué tipo de carencias y fallas tiene el sistema desde su diseño y qué tipo de herramientas nos ofrece para mitigarlas. Esto nos generará una conciencia adecuada del contexto operacional en el que nos movemos y sobre los riesgos que deberemos afrontar y gestionar en el desempeño de nuestra tarea. Una vez asimilada esta realidad contextual, debemos tener claro que la barrera que las tripulaciones debemos proteger en el ejercicio responsable de la operación, es la última de todas antes de activarse las alarmas y que de esa protección dependerá el resultado final de nuestros vuelos.

 El tipo de amenazas que pueden agujerear nuestra barrera depende del contexto que esté siendo analizado, de modo que en un contexto sistémico u organizacional, existirán unas amenazas y unas barreras defensivas determinadas. Si lo que se pretende analizar es la actuación de una tripulación, tanto las amenazas como las barreras cambian de nombre y si lo que se pretende es analizar un accidente, vuelven a cambiar de nombre las láminas y las flechas. De este modo, puede establecerse un modelo Reason general, e ir desarrollando submodelos para analizar las barreras y amenazas que afectan a cada eslabón de la cadena operacional.

 La aplicación práctica de este modelo, nos debe servir para definir cuales son las amenazas que intervienen en nuestro entorno de operación y cuales son las herramientas de gestión que tenemos para mitigarlas. Podemos aplicarlo a cualquier contexto, ya sea una escuela de vuelo, una compañía aérea, una operación concreta, un área determinada de nuestra organización, o un incidente que requiere ser analizado para extraer conclusiones certeras y adoptar medidas correctoras.

El modelo TEM (operacional)

El modelo TEM es un modelo de criterio operacional basado en la  identificación de factores ajenos a la voluntad de la tripulación que pueden dificultar la operación (amenazas). Tras su identificación, la tripulación debe gestionarlas para evitar acciones o inacciones propias que puedan generar desvíos sobre la expectativa operacional (errores) y llegado el caso de comisión de errores, la tripulación debe identificarlos y corregirlos para evitar estados indeseados de la aeronave (USA) que pueden llegar a ser irreversibles.

TEM es, por tanto, un CRITERIO de operación que deben interiorizar las tripulaciones  para evitar incidentes o accidentes, partiendo de una adecuada anticipación, monitorización y comunicación de la realidad operativa. Para ello deben desarrollar una serie de competencias que favorecen un rendimiento óptimo y garantizar operaciones seguras en un entorno de trabajo en equipo, donde la conciencia situacional es compartida gracias a una comunicación efectiva y un eficaz reparto de trabajo por parte del líder del equipo (el Comandante), quien con todos esos mimbres, será capaz de tomar las decisiones mas solventes en función de las circunstancias.

Ahora sí, podemos percibir con cierta claridad la interrelación existente entre los modelos de REASON y TEM. Veíamos en el modelo de REASON que, cuando el objeto de análisis es la actuación de la tripulación, las flechas con capacidad potencial de agujerear las barreras defensivas eran las AMENAZAS que debe identificar la tripulación. Las barreras defensivas son las herramientas de gestión de dichas amenazas por parte de la tripulación para evitar los errores. Y los agujeros de cada barrera constituyen los errores cometidos por la tripulación tras una deficiente identificación o gestión de las amenazas. De este modo comprobamos cómo un modelo analítico desemboca en un modelo operacional con idéntico contenido y que además, define el criterio de actuación que tienen que seguir las tripulaciones en sus operaciones diarias.

Podemos afirmar sin temor a equivocarnos, que TODOS los ERRORES cometidos por una tripulación, provienen de una AMENAZA previa no identificada o no gestionada, ya sea prevista, imprevista o latente. Ello nos lleva a la necesidad de buscar, anticipar e identificar cualquier amenaza que pueda poner en riesgo la operación, constituyendo un pilar básico del criterio TEM que debe regir la conducta de cualquier tripulación.

TEM: Tipos de AMENAZASERRORES y ESTADOS INDESEADOS

Por su VISIBILIDAD O DETECTABILIDAD, pueden ser:

PREVISTAS. Son detectables, ya que aparecen en la información del vuelo (NOTAMS, INTAMS, METAR, TAFOR, ATC INFO…), o son visibles antes de influir en la operación (tormentas, vuelo nocturno, ergonomía deficiente…). Pueden ser gestionadas y mitigadas con antelación.

IMPREVISTAS. Aparecen de repente, sin previo aviso y no aparecen en la información del vuelo. (WINDSHEAR, cristales de hielo, averías sobrevenidas, cambios de pista de última hora…). Pueden ser gestionadas y mitigadas en el momento.

LATENTES. Están escondidas en los procesos o en las personas, no son visibles y solo pueden ser gestionadas si son detectadas, reconocidas o asumidas (estados emocionales negativos, carencias organizacionales, errores de otros…)

Y por su PROCEDENCIA, pueden provenir de:

EL ENTORNO:  METEOROLÓGICO (tormentas, WINDSHEAR, viento cruzado, contaminación de pista, turbulencia, desviaciones de ISA, altas y bajas presiones, vuelo nocturno…), OROGRÁFICO (terreno montañoso, elevado…), AEROPORTUARIO (pista corta, estrecha, pendiente de pista, equipos inoperativos, aproximaciones no estándar, iluminación deficiente…), ATC (comunicación deficiente, fraseología no estándar, saturación de tráfico, idioma, cambios de pista de última hora…)

EL AVIÓN (Averías, ergonomía, automatismos complejos, pesos altos o bajos, envergadura, número de motores…)

LA TRIPULACIÓN (Estados emocionales negativos, estrés, fatiga, déficit de competencias, distracciones, complacencia…)

LA ORGANIZACIÓN (Diseño o gestión  deficiente de procesos, falta de recursos, cultura de seguridad reactiva, punitiva, tripulaciones multiculturales, herramientas de información a la tripulación deficientes, prioridades comerciales, políticas de ahorro excesivas, mantenimiento deficiente, déficit de entrenamiento, falta de apoyo corporativo…)

ERRORES DE OTROS (Errores de ATC, de mantenimiento, organizacionales…)

Los errores, por su ORIGEN pueden ser:

DE INCUMPLIMIENTO

Por incumplir limitaciones, envolvente, normativa, recomendaciones, autorizaciones… (configuración errónea, velocidad excesiva, sobrecarga de sistema, error de navegación…)

DE PROCEDIMIENTO

Por incumplir procedimientos, ya sea por desconocimiento o por violación de los mismos (configuración tardía, packs no alimentados, no interceptación de LOC o GS …)

DE COMUNICACIÓN

Con ATC, con el otro piloto, con el sobrecargo, con personal de tierra. Nos lleva a malinterpretaciones de instrucciones o de información.

DE APTITUD

Errores de ejecución de maniobras, de lectura de listas o procedimientos, de gestión de información…

DE ACTITUD

Errores derivados de actitudes complacientes, autoritarias, despistes, distracciones….

DE DECISIÓN

Decisiones erróneas, por precipitación, falta de consenso, o impulsivas, derivadas de la no aplicación de modelos racionales de toma de decisión (FORDEC), o de falta de conciencia situacional.

Los estados indeseados, por su GRAVEDAD, pueden ser:

REVERSIBLES: Pueden corregirse

•APROXIMACIÓN  DESESTABILIZADA

•OVERSPEED O STALL

•GROSS NAVIGATION ERROR

•DESPRESURIZACIÓN POR FALTA DE ALIMENTACIÓN DE PACKS

IRREVERSIBLES: No pueden corregirse

•HARD LANDING

•LONG/SHORT LANDING

•TAIL STRIKE

•RUNWAY INCURSIÓN

•GROSS NAVIGATION ERROR ACCIDENTE

A continuación, mostramos el análisis TEM de una amenaza típica en aviación, que es el requerimiento por parte de ATC de un CAMBIO de PISTA de última hora. La tripulación ya tiene preparada la aproximación a una pista y el ATC requiere a última hora el aterrizaje por otra pista, debido a la necesidad de secuenciar a los tráficos en despegue.

Ejemplo práctico de modelo TEM.

Ante la AMENAZA de un cambio de pista, la tripulación debe gestionarla. ¿Cómo? Evaluando la situación antes de aceptar el cambio, considerar proceder a una espera, repartir las tareas adecuadamente para gestionar la carga de trabajo y estableciendo prioridades, evitando así que ambos pilotos se lancen a gestionar la MCDU al mismo tiempo. Realizar una doble comprobación, identificar las limitaciones propias y consensuar la aceptación. Al finalizar, realizar un nuevo briefing para mantener actualizada la conciencia situacional.

La no gestión adecuada de la amenaza nos puede llevar a cometer errores. Es decir, no gestionarlo adecuadamente como en el párrafo anterior puede provocar incertidumbre y en situación de peligro. Véase algunos ejemplos:

ACEPTAR SIN EVALUAR

NO DEMORAR EL ATERRIZAJE

NO REDISTRIBUIR TAREAS: SOBRECARGA DE TRABAJO.

AMBAS CABEZAS EN MCDU

AVIÓN SIN VOLAR

PRISAS, NO COMPLETAMOS las TAREAS

FALTA DE CONSENSO

INICIAR APROX ALTOS/RÁPIDOS

CONFIGURACIÓN TARDÍA

NO HACER NUEVO BRIEFING

NO GA MINDED

Aún así, nos encontraremos en situación de corregir esos errores, o bien un GO AROUND y volver a empezar. No obstante, si la tripulación no es consciente de los errores y no introduce las amenazas en su análisis no podrá corregirlos y es posible que la situación finalice en un ESTADO INDESEADO:

TOMA LARGA

BRKS HOT

TOMA DURA

LVL BUST EN GA

RIESGO DE IMPACTO

RWY EXCURSION

RIESGO DE IMPACTO

 …Con el consiguiente informe al departamento de SMS en el mejor de los casos.

El modelo EBT (desarrollo de competencias)

El modelo EBT es un modelo de aprendizaje y evaluación orientado a las tripulaciones de vuelo y basado en el desarrollo de las competencias que la Industria ha identificado como “claves” para una operación segura, tras analizar las causas de los accidentes de aviación en las últimas décadas.

Las tripulaciones deben tener un profundo conocimiento del EBT, no sólo porque van a ser periódicamente evaluados según este modelo, sino porque las competencias que lo definen constituyen las habilidades, conocimientos y actitudes que todo piloto debe desarrollar para garantizar operaciones seguras en cualquier contexto.

Si bien el modelo REASON nos exige el conocimiento del contexto operacional en el que nos desenvolvemos y el modelo TEM nos requiere la identificación de amenazas y errores que pueden suponer riesgos, este modelo de competencias EBT nos obliga al desarrollo permanente de las cualidades requeridas en un piloto para operar con garantías de seguridad. Todos los conceptos teóricos que desarrolló el CRM desde sus inicios y que supusieron la integración del factor humano en los procesos operacionales han desembocado en la compilación de 9 competencias básicas cuyos marcadores de conducta definen el nivel de integridad de un piloto profesional.

 Estas 9 competencias son : Conocimientos (KNO), Aplicación de procedimientos (PRO), Trayectoria en vuelo manual (FPM), trayectoria en vuelo automático (FPA), conciencia situacional (SAW), comunicación (COM), Liderazgo y trabajo en equipo (LTW), gestión de la carga de trabajo (WLM) y resolución de problemas y toma de decisiones (PSD).

Dada la importancia del desarrollo constante de estas competencias, no solo en términos de evaluación y aprendizaje en los cursos de entrenamiento periódico, sino también en la actuación del piloto durante la operación diaria, éste debe de hacer un ejercicio de exploración profunda en este terreno para conocer perfectamente qué marcadores de conducta definen cada competencia y qué aspectos debe trabajar para mejorarlas, identificando así sus propias fortalezas y debilidades. Con el fin de facilitar este proceso de interiorización, hemos desarrollado un LOOP (imagen superior), que interrelaciona las 9 competencias en una secuencia ordenada y lógica, acorde con el orden operacional que rige la actuación de una tripulación de vuelo.

Marcadores de conducta de cada competencia

Aquí tenemos los marcadores de conducta que definen cada competencia. Para un piloto de aerolínea, su trascendencia radica en que cada competencia aglutina las características que debe desarrollar el piloto en la búsqueda de una mejora y evolución continua a lo largo de su carrera profesional, con el fin de garantizar máxima seguridad en sus operaciones, sin olvidar que el marco en que se desenvuelve dentro del avión es el de trabajo en un equipo de alto rendimiento que tiene entre manos una unidad de negocio de incalculable valor material y humano, concebido para el transporte de pasajeros en un entorno cambiante y a veces, hostil.

Además, podemos constatar que el adecuado desarrollo de las 9 competencias garantizan la protección de la barrera de la tripulación del modelo REASON y el cumplimiento del criterio de gestión de amenazas y errores definido en el modelo TEM. O dicho de otro modo, el cumplimiento de los marcadores de conducta de las 9 competencias, garantiza una adecuada gestión de amenazas y errores y fortalece enormemente la barrera de seguridad que constituye la actuación de la tripulación de un vuelo.

Si un piloto profesional incorpora a su estructura mental el LOOP de competencias, toma como referencia los marcadores de cada competencia y consigue desarrollarlas, estará en el camino de la excelencia en sus operaciones diarias y con ese mismo criterio, será evaluado en cada curso periódico que afronte para demostrar su nivel de capacitación y desarrollo profesional.

Integración de los 3 modelos en 1 único concepto: CREW ACTION BOX

Tras haber profundizado en la comprensión de los 3 modelos teóricos aplicados a la operación diaria de vuelo y focalizando la atención en la actuación de la tripulación, que constituye la última barrera de seguridad contra el accidente, podemos integrar todos los conceptos implícitos en los modelos en uno solo : The Crew Action Box.

 Este modelo integrado pretende concienciar a las tripulaciones de la trascendencia que tiene en sus operaciones, en términos de eficiencia y seguridad:

•Una pronta identificación de las amenazas que intervienen en cada contexto

•Un óptimo de desarrollo de competencias para gestionar esas amenazas, identificar errores, corregirlos y así evitar estados indeseados de la aeronave.

•Una permanente conciencia de protección de esa última barrera de defensas que constituyen nuestras acciones, inacciones y decisiones.

 La identificación de amenazas se obtiene a través del rigor y la anticipación en el tratamiento de la información operacional. Su gestión correcta se consigue a través del desarrollo de los marcadores de conducta de las 9 competencias. La identificación del error se consigue a través de una comunicación efectiva y asertiva, con una monitorización constante de las acciones del otro y la corrección del error depende en gran medida de un liderazgo integrador que asuma el error, de un conocimiento exhaustivo del avión y el entorno y de un proceso de toma de decisiones ordenado y racional.

«The Crew Action Box».

 Podemos atribuir las deficiencias de una operación a múltiples factores ajenos, pero la tripulación SIEMPRE tendrá en sus manos la posibilidad de proteger con su actuación esa última barrera que evita la permeabilidad hacia el accidente, de un sistema que es considerado como el más seguro del mundo.


SOBRE EL AUTOR:

Andrés Diez Moro (1963), cursó sus estudios aeronáuticos en la XII promoción de la ENA y actualmente es Comandante de A330/340 en la Compañía Iberia.

Ha sido facilitador de CRM a pilotos y despachadores, formador de facilitadores  y actualmente es TRI LIFUS . Especializado en FFHH, gestión del estrés, modelo TEM y análisis de accidentes. Ha desarrollado dentro de Iberia, herramientas didácticas operativas y colabora activamente en estudios y análisis orientados a la seguridad en la operación de vuelo. Ha sido ponente en seminarios TEM en el instituto militar aeronáutico de Bogotá para las Fuerzas Aéreas Colombianas, colaborador del proyecto europeo HILAS para la integración del Factor humano en la aviación y ponente en el seminario TEM para médicos y personal hospitalario organizado por Mindray, con el objeto de analizar el modelo TEM e integrarlo en los procesos hospitalarios y entornos quirúrgicos.

Ha diseñado modelos conceptuales de CRM, como el “CREW BOX” y el “EMBUDO OPERACIONAL” con el fin de ofrecer una aplicación práctica a los modelos teóricos de FFHH en la aviación y ha elaborado numerosos trabajos de aviación, de publicación interna, sobre CRM, Navegación, procedimientos, Balked Landing, Operación Normal y anormal del A330/340 y sobre análisis y desarrollo de una cultura organizacional predictiva.

QUÉ ES EL WAAS CHANNEL.

¿Alguna vez os habéis preguntado qué son los números que aparecen en las fichas de aproximación SBAS?

A la hora de escoger un tipo de aproximación PBN, nos encontramos con aproximaciones del tipo WAAS en Estados Unidos, o EGNOS en Europa, entre otras. Debajo del nombre del tipo de ficha, por ejemplo: RNAV (GPS) Y 04L de KJFK, aparece WAAS y, debajo CH 77519. Y justo debajo del canal una combinación de letras y números.

Si echamos mano de nuestra memoria, recordamos el sistema WAAS es un sistema de aumentación de la señal, cuya señal de corrección es difundida mediante la señal de satélites geoestacionarios, en USA el WAAS. Por lo tanto, no es necesario que exista en los aeropuertos ningún tipo de estación en tierra que envíe una señal al avión para corregir la posición GPS. Al contrario que en el GBAS. Pero entonces, ¿Por qué pone un canal en la ficha de aproximación?

Cuando se diseñó el sistema, el número del canal se consideró como una opción del equipo utilizado por la aeronave que permitía utilizar 5 dígitos para seleccionar el tipo de aproximación en lugar de utilizar un menú como actualmente hacemos cuando elegimos en nuestra base de datos de navegación. Dichos números corresponden a cada ficha de aproximación y sólo hay uno.

Ejemplos de fichas de WAAS (RNP Y 04L de KJFK) y EGNOS (RNP 06 de EHAM).

Debajo del canal, encontramos una combinación de 4 letras y números. Esto es el identificador. Es decir, cuando sintonizamos un ILS, o un VOR, existe un código morse para identificar auralmente. En este caso, se identifica visualmente que corresponda el tipo de aproximación y el aeropuerto con nuestra base de datos. La primera letra será correspondiente al tipo de señal utilizada: W para WAAS o E para EGNOS. Los dos números siguientes serán la pista. Para cuando la pista tiene LEFT, CENTER o RIGHT, utiliza A, B o C. Así, para la RNAV (GPS) Y 04L de KJFK, tendremos W04A como identificador de la ficha a utilizar.

El Jet Stream

El Jet Stream
¿Alguna vez te has preguntado por qué es más rápido volar de América a Europa que al revés? La respuesta es la corriente en chorro o Jet Stream. Este «río» de aire que fluye a través de la Tierra juega un papel importante en la aviación. Las aerolíneas han aprendido cómo aprovecharlo y planificar sus vuelos en consecuencia.

DESCUBRIMIENTO DEL JET STREAM

El descubrimiento del Jet Stream, o corriente en chorro, a menudo se atribuye a Wasaburo Ooishi, un meteorólogo japonés. En 1923, observó que los fuertes vientos en altura desviaban los globos atmosféricos a medida que ganaban altitud. Al rastrear su posición, pudo determinar la velocidad del viento. Aunque fue sólo una predicción, pudo registrar una tendencia a lo largo de los años y determinó que estos vientos seguían un patrón. Por desgracia, sus observaciones pasaron casi desapercibidas ya que las publicó en Esperanto.

Durante la Segunda Guerra Mundial, las observaciones de Ooishi permitieron a Japón lanzar la «Operación Fu-go». Usando su predicción sobre los vientos en altura, los japoneses lanzaron cerca de 10.000 globos de hidrógeno que transportaban bombas sobre el Océano Pacífico hacia América. Las predicciones de 190 nudos (350 km/h) en la velocidad del viento (entre 30.000 y 38.000 pies) llevarían los globos a la costa oeste de los Estados Unidos en 3 días. Dichas predicciones resultaron ser inexactas y sólo algunos globos alcanzaron el objetivo y no causaron el efecto deseado.

Balloons loaded with bombs. Photo: warhistoryonline.com
Globos equipados con bombas. Foto: warhistoryonline.com

Al aviador estadounidense Wiley Post también se le atribuye el descubrimiento del Jet Stream. Post logró el primer vuelo en solitario alrededor del mundo en 1931, desarrolló el traje de presión y exploró los límites del vuelo a gran altitud. En 1935, mientras volaba a 30.000 pies en su Lockheed 5C Vega «Winnie Mae», experimentó velocidades de hasta 340 millas por hora. Volando en el Jet Stream, pudo cubrir 2.035 millas entre Burbank, California y Cleveland, Ohio en 7 horas y 19 minutos, demostrando los beneficios de los vuelos a gran altitud. La misma distancia, al nivel del mar, le habría tomado 12 horas y 42 minutos.

Wiley Post and his Lockheed 5C Vega “Winnie Mae”. Photo: Hulton Archive
Wiley Post y su Lockheed 5C Vega “Winnie Mae”. Foto: Hulton Archive

UN EFECTO MUNDIAL

El aire actúa como un fluido y, como el agua, fluye y se ve afectado por fuerzas externas, modificando su comportamiento y dando forma a sus patrones.

En la Tierra, debido al calentamiento diferencial a lo largo de su latitud, el desarrollo vertical de la atmósfera cambia. Cerca del ecuador, el aire es más cálido, por lo que asciende creando un área de baja presión cerca de la superficie. El aire circundante tiende a llenar este espacio “vacío”, por lo que fluye desde el área de alta presión hacia el área de baja. El “vacío” creado por este movimiento de aire en superficie, crea un movimiento descendente en el aire que está en altura, en la Tropopausa.  Creando así, una circulación.

Circulation of the Hadley, Ferrel and Polar cell. Photo: NASA – Wikimedia
Circulación de las células de Hadley, Ferrel y Polar. Foto: NASA – Wikimedia

Hay tres células de circulación por hemisferio. Las células de Hadley, Ferrel y Polar. Estas células encuentran su límite superior en la Tropopausa, dónde el aire deja de ascender. Cerca del ecuador, el aire es más cálido y asciende mucho más alto, estirando la Tropopausa. La altitud media (varía durante el año) de la Tropopausa en el ecuador es de 56.000 pies y de 30.000 pies en los polos.

Cross-section of the Cells and its circulation. Photo: Sleske – Wikimedia
Sección de las células y su circulación. Foto: Sleske – Wikimedia

La corriente en chorro se origina en el borde entre estas celdas. Debido a la rotación de la Tierra, el aire que viaja hacia este borde es forzado lateralmente, debido al efecto Coriolis. En el hemisferio Norte, el aire que viaja hacia el Norte se verá obligado a fluir hacia el Este. Cuanto mayor es su velocidad, mayor es la desviación. Es por eso que la corriente en chorro fluye principalmente hacia el Este. Si la diferencia de temperatura es alta entre las celdas, la velocidad del Jet Stream aumenta, hasta 200 nudos (370 km / h).

El Jet Stream es como un «río» continuo de aire, serpenteante. Esto se debe a la diferencia en el efecto Coriolis en diferentes latitudes. Son las llamadas ondas de Rossby, y es la razón por la que a menudo vemos Jet Streams que no fluyen directamente hacia el este. 

Rossby waves. Photo: NASA
Ondas de Rossby. Foto: NASA

EL JETSTREAM EN AVIACIÓN

Con todo este conocimiento, la aviación puede usar las condiciones atmosféricas en su favor. Mediante el uso de información meteorológica y por satélite, podemos predecir fenómenos meteorológicos futuros, vientos en altura y mucho más. Las aerolíneas utilizan información actualizada cada hora para planificar sus vuelos evitando el tiempo potencialmente peligroso en todo el mundo.

Cuando se trata de Jet Streams, los departamentos de planificación de vuelos tienen en cuenta la posición, altura, extensión y velocidad del viento en su ruta planificada. Por tanto, anticipándose y siendo capaces de modificar la ruta para, por ejemplo, evitar un fuerte viento de cara o un área de turbulencia asociada a un Jet Stream.

Significant Weather Chart of the Atlantic Ocean. Photo: Crewbriefing.com
Mapa de tiempo significativo del Océano Atlántico. Foto: Crewbriefing.com

Los pilotos también reciben información sobre el clima en forma de SIGWX (mapa de tiempo significativo) y mapas de viento. De esta manera, pueden examinar la situación y decidir la mejor opción. En vuelos de larga distancia, un desvío de ruta implica una gran cantidad de consideraciones: la planificación del combustible puede verse afectada, la operación ETOPS puede restringir ciertos desvíos, los aeropuertos alternativos en ruta deberían ser ajustados, etc.

TURBULENCIA ASOCIADA, ÁREAS DE CAT

Como hemos visto, el Jet Stream es un flujo de aire que fluye velozmente. El aire que lo rodea fluye, en comparación, más lentamente. Cuando un avión se acerca a un área de Jet Stream y la velocidad del viento aumenta repentinamente, éste sufre de Windshear; Un cambio repentino en la velocidad relativa entre dos masas de aire adyacentes. Esto provoca inestabilidad en la masa de aire y, a medida que la aeronave vuela a través de ella, está sujeta a esas perturbaciones y sufre de turbulencias. Además, ya que la corriente en chorro fluye justo en el borde de la celda,  existe una diferencia entre las temperaturas del aire a ambos lados de ella, cambiando así la su densidad y generando también inestabilidad.

Este tipo de turbulencia no está asociada a nubes, por eso se la conoce como turbulencia en aire claro – En inglés Clear Air Turbulence (CAT). Por lo general, esta turbulencia se reduce a simples “baches”. Con sacudidas breves y repetitivas, puede ser incómoda para los pasajeros, más que peligrosa para la seguridad del vuelo. Sin embargo, ha habido situaciones en las que se han encontrado turbulencias moderadas y severas como resultado de una turbulencia en aire claro.

Depiction of a cell boundary, Jet Stream and Area of CAT
Evolución vertical de la corriente en chorro.

Los pilotos hacen todo lo posible para evitar estas áreas. Desde la etapa de planificación del vuelo, con la ayuda de los mapas y cartas antes mencionados, se marcan las áreas CAT y también se señaliza su extensión vertical. Como podemos ver en el mapa, la línea intermitente azul sobre Cerdeña (Italia) representa un área de potencial turbulencia en aire claro. En la leyenda podemos ver que se sitúa entre nivel de vuelo 210 y 410. También podemos ver cómo se asocia con una corriente en chorro que fluye de Norte a Sur (línea roja) a 120 nudos (cada triángulo representa 50 nudos y cada línea 10).

Significant Weather Chart showing the Jet Stream and associated CAT areas. Photo: Crewbriefing.com
Mapa significativo con el Jet Stream y su área CAT asociada. Foto: Crewbriefing.com

Cuando un avión está sujeto a turbulencias moderadas y severas, los pilotos deben informar al ATC —Control de tráfico aéreo— para ayudar a otros tráficos en el área circundante y avisar sobre posibles áreas peligrosas. Un simple cambio de Nivel de Vuelo (Altitud) suele ser suficiente para salir del área turbulenta. Muchas veces, los pilotos piden al ATC un cambio de altitud para evitar la incómoda turbulencia.

CASO PRÁCTICO

Como pequeño ejemplo de la gran influencia que puede tener el Jet Stream en un vuelo. Vamos a tomar un vuelo desde Los Ángeles a Tokio-Haneda, y ver cómo podemos aprovechar nuestro conocimiento.

Podemos ver que el Jet Stream, el mismo que instigó el proyecto de los globos japonés, fluye a lo largo del Océano Pacífico. Si siguiéramos la ruta estándar, nos encontraríamos justo en el medio de Jet Stream. Echemos un vistazo a su efecto.

Al volar a través del Jet Stream, estamos experimentando un viento de cara sostenido de hasta 120 nudos a lo largo de toda la ruta. Esto daría como resultado un tiempo de vuelo de 12 horas y 45 minutos para cubrir 4.835 millas náuticas y un consumo de combustible estimado de 94.800 kg. Teniendo en cuenta el combustible para contingencia, la reserva final y el combustible alternativo, necesitaríamos aproximadamente 108.000 Kg de combustible al despegue.

Por el contrario, si decidimos desviar la ruta hacia el Norte, a pesar de que volaremos una ruta más larga (123 millas náuticas más), evitaremos la corriente en chorro y los efectos serán muy notables. Veamos:

Volando por la ruta Norte, volaríamos una distancia de 4.958 millas náuticas, tomaría sólo 11 horas y 25 minutos, 1 hora y 20 minutos menos, y ahorrando casi 10 toneladas de combustible. Este es un ahorro masivo, a pesar de volar una ruta más larga. Por supuesto, este es un ejemplo perfecto, algunos días la diferencia sería menor. Pero, en general, esto significa un ahorro de millones de dólares cuando se programan miles de vuelos anualmente. Vemos así, la importancia de tener un equipo de planificación y operaciones eficaz.

EL GPS Y SUS APLICACIONES (III).

Aproximaciones RNP.

En las anteriores partes hemos comentado los distintos tipos de sistemas utilizados para dar precisión a la señal del GPS. Aquí conoceremos qué beneficios nos reportan estas señales en la práctica.

Integridad de la señal GPS. RAIM.

Durante el despacho de un vuelo, de la mucha documentación que comprobamos es el “RAIM check passed”. ¿Qué significa?

En el anterior capítulo nombramos uno de los puntos básicos para poder utilizar GPS para navegación en aviación: La integridad. Para poder garantizarla, era necesario comprobar que, durante el vuelo, el servicio iba a tener cobertura GPS suficiente.

El RAIM (Receiver Autonomous Integrity Monitoring) es sencillamente un algoritmo que determina, mediante la comparación de distancias desde varios satélites, que la información que da cada uno es consistente. Para comprobar esa consistencia, es necesario la señal de varios satélites, teniendo en cuenta que para establecer una posición en 3 dimensiones.

Cuatro satélites visibles pueden dar una posición. Sin embargo, el sistema considera que no son suficientes para proveer integridad en el caso de que uno diera mala señal, o dejara de estar visible.

En el caso de estar visibles 5 satélites, si alguna anomalía es detectada en alguno de ellos, el sistema puede descartar uno, quedándose con los cuatro básicos.

Con 6 o más satélites visibles, el receptor es capaz de detectar y excluir el satélite cuya señal sea inconsistente.

Existen dos funciones, FD (Fault Detection) y FDE (Fault Detection and Exclusion), que se combinan con el sistema RAIM. La primera ya la hemos comentado, pues tiene que ver con la detección de las anomalías o inconsistencia. Al detectarlas realiza un aviso, pero no excluye el satélite anómalo. En la segunda, más habitual en los receptores modernos desde hace unos años, no solamente detecta el satélite anómalo, sino que, además, lo excluye de la ecuación y no lo tiene en cuenta para realizar sus cálculos de navegación.

¿Cuándo es necesario realizar una comprobación RAIM?

Todos los operadores que utilicen navegación RNAV, deben emitir un informe de predicción RAIM antes del vuelo.

Existen algunos sistemas que por sí mismos proveen la integridad necesaria como vimos en la segunda parte. Los sistemas de aumentación de la señal GNSS, eran capaces por sí mismos de autocomprobar la integridad de su señal. Sin embargo, dado que son utilizados para aproximaciones específicas, quedan otro tipo de navegaciones basadas en GPS en las cuales es necesaria su comprobación:

  • Rutas RNP,
  • RNP (GPS),
  • Aproximaciones GPS,
  • SIDs y STAR RNP.

¿RNAV o RNP? ¿Diferencias?

El concepto de RNAV es el espacio aéreo en el que existe un cierto nivel de equipos abordo de la aeronave y asume que ésta permanecerá durante al menos un 95% del tiempo manteniendo un nivel de precisión de navegación determinada. Es decir, una aeronave volando en espacio aéreo RNAV-10 será capaz de mantener el 95% del tiempo dentro de un pasillo de 10 NM de ancho.

Sin embargo, RNP es parte del conocido como Performance Based Navigation (PBN), el cual añade a la misma precisión de navegación RNAV un sistema de monitorización y alerta en caso de degradación de su capacidad.

RNAV + sistema de aviso = RNP

Al mismo tiempo, habréis podido observar que, durante años, algunos términos podrían llevar a confusión como el de BRNAV, PRNAV, RNAV-2. RNAV-5… Hasta hace relativamente poco tiempo, Europa y Estados Unidos y otros estados como Canadá seguían criterios diferentes a la hora de denominar el mismo requisito de navegación. Por suerte, esto quedó unificado bajo denominaciones OACI. En Europa, consideraba BRNAV a las actuales RNP5 y PRNAV a las RNP1, utilizando el criterio para ruta, llegadas y/o salidas instrumentales. En Estados Unidos, por el contrario, la FAA utilizaba el término RNAV. Quizá aún podáis encontrar algo de literatura al respecto, pero, al fin y al cabo, es lo mismo con distinto nombre.

Desde el año 2.014, los términos RNAV y RNP aparecían indistintamente en la cartografía aeronáutica llevando a confusión al piloto, incluso cuando desde entonces, en la práctica eran lo mismo. Esto se produjo dado el enorme esfuerzo que suponía, no sólo económico, sino retirar la ingente documentación publicada hasta la fecha y la modificación de toda la cartografía que existía, sobrepasando la capacidad de los recursos de aquel momento. Afortunadamente, según la última versión del doc. 9613 de OACI al respecto, esto dejará de pasar y la cartografía verá ya con referencia a RNP y no RNAV (*).

De esta manera, los cambios serán de la siguiente manera:

(*) En una publicación en mayo de este año, OACI ha elaborado un plan por países que se extenderá hasta algo mas de 2.020.

¿Y nuestros mínimos? ¿Podemos realizar la aproximación?

En la publicación anterior dejamos alguna idea de qué tipo de mínimos corresponden a cada tipo de aproximación. Realizar una aproximación GPS simple, o realizar una aproximación con GBAS (aproximación GLS) o con SBAS (WAAS o EGNOS), llevará consigo unos mínimos determinados.

Aproximaciones “RNAV (GNSS) RWY xx” ó “RNAV (GPS) RWY xx”.

Si se realizan aproximaciones PBN utilizando tan solo la señal GPS, tendremos una señal de guiado horizontal o curso de final hacia la pista. En este caso dispondremos de unos mínimos barométricos que seleccionaremos en nuestro FMS llamados LNAV/VNAV. Dichos mínimos, al ser barométricos, se verían afectados ante una temperatura fuera del margen que establece la ficha, por lo que habría que variar la manera en la que la volamos como ya sabéis. Por lo tanto, no podría realizarse con el guiado vertical en “managed” del avión, estableciendo el piloto la senda de descenso correcto.

En el caso de realizar aproximaciones PBN basadas en SBAS, y bajo la misma designación, los mínimos a tener en cuenta serían los de LPV (Localizer Performance with Vertical guidance). Es decir, en la propia designación de la ficha de aproximación constataremos el canal (CH) en el que la señal del WAAS (si es en U.S.A.) difunde la información. Estos mínimos, a diferencia de los anteriores son geométricos, por lo que no se verán afectados por la temperatura.

En algunos aeropuertos, bajo la misma designación encontraremos varias opciones de mínimos: LNAV, LNAV/VNAV y/o LPV. En función de la capacidad del avión para realizar la aproximación utilizaremos unos u otros. El hecho de que aparezca el canal del WAAS o EGNOS, no implica que automáticamente no podamos realizar esa aproximación si no disponemos de SBAS. Hay que consultar los mínimos de la ficha y sólo con la designación no es posible saberlo. Cómo ejemplo podéis consultar en Lido AIP el aeropuerto de Miami Int’l. Esto cambiará como veremos más abajo con las nuevas designaciones.

Aproximaciones “GLS RWY”

Las aproximaciones del tipo GLS (GBAS Landing System) son consideradas de precisión. La forma de volarlas es “ILS alike”. La selección de la frecuencia o canal como sucede en las aproximaciones basadas en SBAS, la puede seleccionar el avión directamente como en los modernos aviones Airbus o Boeing, o manualmente mediante una caja selectora instalada a tal efecto.

Selección de una aproximación GLS para el aeropuerto de Franckfurt en un A330-200.

Al tratarse de una aproximación de precisión, los mínimos a considerar serán los de CAT I ó CAT II/III si estuvieran ya instalado en algún aeropuerto. Podéis consultar el AIP los aeropuertos de Frankfurt o Málaga para ver su representación.

Aproximación GLS Y a la 07L de Frankfurt.

CAMBIOS EN LA REPRESENTACIÓN DE LOS MÍNIMOS.

Entre los cambios mencionados anteriormente, existe otra sobre la representación de los mínimos, más fácil de interpretar.

Para ello, la nueva designación de fichas para las aproximaciones RNP, pasará a ser del siguiente modo. Si la designación de la ficha de aproximación es “RNP RWY xx”, quiere decir que los mínimos disponibles serán los de LPV, LNAV/VNAV y LNAV. Si, por el contrario, la ficha sólo tiene mínimos LPV, la ficha se designará como “RNP RWY xx (LPV only)”. Y si sólo tiene mínimos de LNAV/VNAV, la designación sería “RNP RWY xx (LNAV/VNAV only)”. Esto agiliza sensiblemente el proceso de identificación de la ficha y los mínimos necesitando la lectura de la designación y no “buceando” por la ficha escudriñando los mínimos para ver si somos o no capaces de realizar esa aproximación.

Tabla del EUR REGIONAL TRASITION PLAN de OACI para los nuevos sufijos sobre mínimos.

RNP AR APCH (RNP authorisation required approach).

Además de los tipos de aproximación mencionadas, existen unas, un tanto especiales. En algunos aeropuertos que requieren tipos de aproximación cuyos requisitos sean mayores del estándar debido a su difícil orografía. Así nacen las RNP AR APCH. Sin embargo, dadas sus características especiales necesitan una autorización especial tanto para la compañía como para las tripulaciones que las realizan.

Este tipo de aproximaciones requieren valores de desvío en aproximación final inferiores a 0.3 NM, en algunos casos de 0.1 NM ó 0.15 NM. Dado la exactitud de su requerimiento, los tramos de viraje han de tener requisitos más elevados de lo habitual. Normalmente los encontraremos basados en RF (Radius to Fix o Virajes de radio fijo).

Como dato añadido, cuando observamos las denominaciones de los tipos de aproximación nos encontramos con algunas que indican el requerimiento añadido para la aproximación: “RF Required” ó “RNP <0.3 Missed approach RNP <1”. No obstante, estos requerimientos añadidos nos los podemos encontrar tanto en las AR como en otras, por lo que no necesariamente son AR aquellas que requieran la utilización de RF, por ejemplo.

Con este capítulo damos por finalizados estos tres capítulos sobre las aplicaciones del GPS en aviación y los tipos de aproximaciones disponibles. Espero que estos tres capítulos hayan podido esclarecer algunos de los conceptos utilizados a diario en nuestras operaciones aéreas.

EL GPS Y SUS APLICACIONES (II).

Sistemas de aumentación de la señal gps.

En el capítulo I sobre el GPS y sus aplicaciones acabamos hablando sobre el DGPS, o GPS diferencial. Se convertía en el primer sistema de aumentación de la señal GPS que daría lugar a varios tipos de sistemas. Desde ahí comenzamos esta segunda parte.

Los sistemas de aumentación de la señal GPS han abierto la puerta a otros tipos de aproximaciones instrumentales sin necesidad de apoyarse en ayudas radioeléctricas como el VOR, NDB o incluso el ILS, dando la capacidad realizar aproximaciones de CAT II/III o en curva donde antes la orografía no permitía una aproximación ILS.

Errores en la señal GPS.

En este punto, tenemos claro que la precisión en la posición de los receptores proviene directamente de la señal emitida por los satélites. En la primera parte y a modo repaso, comentamos el efecto del Selective Availability (SA) y que había sido eliminado en el año 2.000. Además, gracias al DGPS este efecto se contrarrestaba aumentando la precisión. Sin embargo, hay otros efectos intrínsecos que también son necesarios corregir: Error del reloj, error de efemérides, el error ionosférico y el error multitrayecto.

 Vimos como alterando en la señal el tiempo al que se envía la señal, la posición se alteraba (SA). En este caso, el error del tiempo era intencionado. Sin embargo, el reloj del GPS, a pesar de ser atómico, tiene un pequeño error que es necesario corregir.

El error de efemérides, suele rondar los 2,5 m. Los satélites siguen órbitas determinadas alrededor del planeta Tierra. Sin embargo, el planeta no es un globo perfecto y las fuerzas gravitacionales que actúan sobre los satélites no son constantes, lo que implica que las órbitas satelitales necesitan corregirse constantemente. Esto afecta a la posición del satélite para un instante determinado.

El error ionosférico es el más significativo. Según varias fuentes oscila entre los 3 y los 5 metros. Este error es debido a que la señal GPS tiene que atravesar la capa atmosférica y, al hacerlo, la señal cambia su velocidad y se refracta, provocando un retraso en la señal.

Por último, el error de multitrayecto, es un error más pequeño que los anteriores. Está relacionado con el reflejo de la señal del GPS con la superficie. Provoca que el receptor reciba la misma señal en diferentes rangos debidos al rebote. La orografía es un claro ejemplo. 

Sistemas de aumentación de la señal GNSS.

El GPS por sí mismo no podía dar un servicio de navegación aérea apropiado ya que, debido a todos los errores mencionados en el apartado anterior, no cumplía con los requisitos del anexo de 10 de OACI: Precisión, Disponibilidad e Integridad. Con la aparición del DGPS, la FAA se dio cuenta de que podría adaptarlo a la aviación no sólo para la navegación de enruta, sino para dar servicio de aproximación por instrumentos sin depender de las actuales radioayudas eliminándolas en un futuro cercano. (Australia ya comenzó a desmantelar todos los VOR y NDB).

GBAS.

Surgió entonces el LAAS (Local Area Augmentation System). No era otro que un sistema basado en los mismos principios que el DGPS pero con alguna mejora. El sistema permitiría obtener aproximaciones instrumentales del tipo ILS sin necesidad de utilizar señales radioeléctricas. Con el tiempo, pasaría a denominarse GBAS (Ground Based Augmentation System), término utilizado en OACI. Aunque todavía quedan referencias con la terminología anterior LAAS, no existen diferencias prácticas.

¿Cómo funciona el GBAS? En un área determinada se instalan 3 o más antenas receptoras de GPS que funcionan como referencia. Dichas antenas miden el tiempo de la señal entre el satélite y la antena, y calculan la posición. Dicha posición es enviada al GBAS Ground Facility y determina el error y el error medio de la señal GPS. Dicho error es transmitido al equipo de aviónica del avión mediante una antena emisora que opera mediante VHF Datalink (VDB). Como función añadida, el GBAS monitoriza la funcionalidad de los satélites, eliminándolo de la ecuación si fuera necesario.

Esquema de antenas del GBAS (imagen FAA).

El GBAS da cobertura en un área de unas 23 NM y permite ofrecer hasta 48 tipos de aproximación diferentes. Hasta hace dos años, tenía la capacidad de ofrecer CAT I, pero hoy en día tiene capacidad CAT II/III. A este tipo de aproximaciones se les conoce como GLS (GBAS Landing System). Podemos encontrarlas en numerosos aeropuertos de Estados Unidos, Asia y en otros como Rio de Janeiro, Bremen, Frankfurt, Zurich y Málaga.

SBAS.

Dado el éxito del GBAS, se propuso la idea de mejorar la señal del GPS en un entorno mayor al de las 23 NM. Así, la FAA implementó el WAAS (Wide Area Augmentation System). Para el sistema WAAS, se crearon Estaciones de Referencia WRS (Wide-area Reference Stations) distribuidas por el territorio norteamericano y Hawaii, en concreto 38. Estas estaciones hacen la labor de recibir las señales del GPS y compararlas con su propia localización exacta por lo que son capaces de detectar los errores. Esta información recolectada por los WRS (existen 3) es enviada a las WAAS Master Stations (WMS) que generan un mensaje cada segundo. Dicho mensaje contiene información que permite a los receptores de GPS/WAAS corregir el error de posición mejorando su precisión y su integridad. ¿Pero como se consigue enviar el mensaje a los receptores GPS?

Arquitectura WAAS (imagen FAA). Similar al sistema EGNOS europeo.

Para el envío de dichos mensajes, se lanzaron un total de 3 satélites de comunicaciones geoestacionarios que recibían de 6 estaciones o antenas (GEO Uplink System), los paquetes de información y la difundían utilizando el mismo método de envío de las señales GPS. De esta manera, el propio receptor GPS podría recalcular su posición corrigiendo la señal de los GPS con la del mensaje corrector enviada por los satélites geoestacionarios. Al mismo tiempo el propio sistema monitoriza y avisa cualquier dato erróneo que pudiera existir, permitiendo al receptor contar con la fiabilidad adecuada.

Dado el uso de satélites geoestacionarios para el envío de la señal correctora, OACI lo denominó SBAS (Satellite Based Augmentation System). Dado que el WAAS es un sistema SBAS sólo válido para el territorio de Estados Unidos y Hawaii, otras naciones decidieron poner en órbita su propia constelación geoestacionaria. En el caso de Europa, su sistema es el EGNOS. Rusia, India, Japón y China también disponen del suyo.

Sistemas SBAS.

Los sistemas SBAS mencionados anteriormente son interoperables. Es decir, permiten al mismo receptor utilizar las señales en todas las zonas de cobertura GPS.

El sistema SBAS, nos permite realizar aproximaciones SLS (SBAS Landing System) hasta mínimos LPV. Es decir, “Localizer Performace and Vertical guidance”. Lo que podemos traducir a ser capaces de realizar una aproximación como si fuera un ILS, hasta unos mínimos verticales geométricos y no barométricos (utilizando el altímetro).

¿Hay alguna diferencia entre los receptores comunes de GPS y los que utilizan SBAS? Sí. En modelos de avión de líneas aéreas es menos visible dado que, en el caso de Airbus, se integra en los MMR del avión. Hablaremos de esto en la siguiente parte. En el caso de aviones ligeros, el equipo utilizado es diferente y si se desea acceder a este tipo de capacidad de navegación es necesario utilizar un GPS con función SBAS. En algunos GPS, la denominación del aparato GPS cambia a “W”. Por ejemplo, GARMIN en el modelo G430, el que tiene la capacidad de realizar estas aproximaciones es G430W.

ABAS.

Una mención aparte merece el ABAS (Aircraft-Based Augmentation system). Como su propio nombre indica, será la aeronave mediante sus equipos de aviónica que mejoran su precisión de navegación. Sin embargo, aunque lo hay, esto no significa que utilice la señal GPS como en los casos anteriores del SBAS y GBAS.

Los equipos de aviónica realizan cálculos mediante algoritmos utilizando otros sensores para corregir su posición. Los más utilizados son los sistemas inerciales de navegación (INS), el DME/DME, o la mezcla de ambos. De hecho, es muy común encontrarse con requerimientos de navegación DME/DME para realizar aproximaciones RNAV-1, por ejemplo. Sin necesidad de requerir GPS.

Otro sistema ABAS muy extendido es el RAIM (Receiver Autonomous Integrity Monitoring que utiliza señales redundantes del GPS para detectar fallos.

Tanto del RAIM como de los distintos tipos de aproximaciones, hablaremos en el siguiente capítulo.

EL GPS Y SUS APLICACIONES (I)

El GPS es un dispositivo bien conocido en nuestros días. Desde su nacimiento en el año 1.973 ha sufrido muchísimas mejoras. Sin embargo, prácticamente sin darnos cuenta estas modificaciones han traído consigo mejoras sin saber qué beneficios nos aportan. Con muchas siglas, eso sí.  

Nacimiento y desarrollo.

No podemos explicar algunas de sus mejoras sin recordar ligeramente sus orígenes, aunque sea de manera breve.

Algunos de los lectores podrán recordar algunos de los sistemas de navegación predecesores al GPS. El LORAN, OMEGA o DECCA comenzaron a desarrollarse con el fin de obtener y de mejorar la precisión de sus sistemas de orientación de armas en las diversas fuerzas armadas de los Estados Unidos. Coincidente con la Guerra Fría en la que sus misiles balísticos necesitaban mejorar la precisión de sus sistemas de navegación, además de conocer la posición de sus submarinos y bombarderos estratégicos.

Cuando los soviéticos comenzaron a lanzar satélites a mediados de los años 50, se dieron cuenta que, aplicando el Efecto Doppler a las señales electromagnéticas enviadas, podían conocer la posición de los satélites en órbita alrededor de la tierra. Poco después intentarían resolver la ecuación al revés. Es decir, un usuario en tierra, mediante la posición conocida de los satélites, podía determinar su posición. El GPS, de hecho, utiliza el mismo método, pero en sentido contrario, para ello es necesario que el GPS lleve un reloj a bordo con la precisión requerida. Con toda esta tecnología y sus posteriores estudios se pudo desarrollar una tecnología que mejoraría la precisión de navegación de miles de metros a cientos de metros.

En 1.973, fue creado el NAVSTAR – GPS, y más tarde se le acabaría llamando Global Positioning System, más conocido con sus siglas como GPS. Entre 1.973 y 1.985 se pusieron en órbita los 10 satélites necesarios para formar la constelación. No sería hasta 1.993 que la constelación la formarían 24 unidades. Aunque en realidad hoy en día son unos 30, de los cuales 24 se encuentran activos.

¿Pero cómo funciona?

Como se ha explicado anteriormente, existe una constelación de satélites describiendo 6 órbitas diferentes dando una vuelta a la tierra cada 12 horas a una altura de más de 20.000 km. Para determinar la posición, los satélites envían una señal desde una posición y hora conocida. La señal electromagnética llegará a un receptor en tierra que sabrá a qué hora exacta llegó la señal. Sabiendo la velocidad de propagación de la onda, el receptor podrá determinar la distancia desde el satélite. Sin embargo, esta distancia sería el radio de una esfera alrededor del propio satélite. Al calcular las distancias con cuatro satélites, el receptor podrá determinar su posición en el punto de cruce de esas cuatro esferas. Dicho cruce no sólo da una posición geográfica sobre un plano horizontal, sino también su altura sobre el terreno.

Dichos satélites emiten varios tipos de ondas en la banda “L”. L1 (1575,42 MHz) transmite en una frecuencia determinada para uso civil y L2 (1227,6 MHz), para uso militar y de manera codificada.

SA (Selective Availability).

En el año 1.983 un B747 de Korean Airlines fue derribado al entrar en espacio aéreo prohibido de la Unión Soviética debido a errores en la navegación. El presidente de Estados Unidos entonces, Ronald Reagan, prometió en ese momento que el GPS estuviera disponible para uso civil de manera gratuita.

La señal del GPS tiene una precisión de unos 30 metros. Cuando el GPS fue creado, el ejército norteamericano, por motivos de seguridad, se reservó que dicha precisión no fuera utilizada por sus enemigos. Así, la señal L1 de uso civil estaba degradada, alterando el reloj de manera aleatoria. Así, la precisión caía hasta niveles de algo más de 100 metros.

A mediados de los años 80, algunas organizaciones como la FAA, United States Department of Transport (DOT) y United States Coast Guard (USCG) ejercieron presión, sin resultado para desconectar el SA.

DGPS (GPS Diferencial).

Como respuesta, la USCG experimentó y desarrolló un sistema que le permitía mejorar la precisión a pesar del Selective Availability. Dicho sistema consistía en colocar una estación en un punto, cuyas coordenadas geográficas eran conocidas. La estación estaba equipada con un receptor de señal GPS y podía cotejar la señal del GPS con su posición real. La estación contaba con un emisor que difundía en frecuencias VHF el error de la señal GPS a otros receptores GPS en la zona de cobertura VHF de la estación para corregir en sus sistemas de posicionamiento el error en la señal del GPS, mejorando la precisión incluso con el SA activado. Este sistema se denominó DGPS o Differential GPS (GPS diferencial).

Esquema de funcionamiento del DGPS.

A finales de los años 90, y dado el éxito del DGPS, la necesidad de mantener el SA desaparecía. Bill Clinton eliminó de manera definitiva el SA en los GPS civiles en el año 2.000. Por otra parte, el ejército norteamericano también había podido desarrollar otra vía para alterar la posición de los GPS en determinadas zonas geográficas por lo que ya no podían alegar seguridad para seguir utilizando el Selective Availability.

Hay que añadir, que el desarrollo del DGPS mejoró la precisión del GPS incluso por encima de la propia señal GPS sin el SA activado, dando posiciones con márgenes de entre 5 y 10 metros.

Cortesía de GARMIN.

La FAA comenzó a utilizar el sistema DGPS para desarrollar sistemas que le permitieran, entre otras cosas, reducir el uso de radioayudas a la navegación, que costaban millones de dólares mantener y cuya precisión quedaba, en algunos casos, muy por debajo del GPS. Comenzaron a estudiar los sistemas de aumentación de la señal GPS, conocido como WAAS (Wide Area Augmentation System). De esto hablaremos en la siguiente parte.