CÓMO AFECTA LA TEMPERATURA Y LA ELEVACIÓN A LOS AVIONES. «HOT & HIGH».

hot and high
Foto A340-600 crédito a Iberia.

Recientemente, en uno de mis tweet, mencionaba el tema de los aeropuertos “hot & high” y, algunos curiosos, con buen criterio, me lanzaron algunas preguntas que paso a tratar de responder a la vez con este artículo. El término es desconocido para muchas personas que viajan habitualmente en avión, e incluso para muchos pilotos deportivos o de ultraligero que no son conscientes de las limitaciones que suponen las altas temperaturas veraniegas en el hemisferio norte, o australes en el caso hemisferio sur.

Altitud de Densidad (DA).

Llevemos un orden. Para poder entender bien lo de “Hot & High”, hay que explicar bien qué es la altitud de densidad como pilar del artículo. Debemos dar cuenta de este factor que, de manera invisible y con gran impacto, afecta a las actuaciones del avión. Quizá el factor más importante de todos los que afectan cuando llegan las altas temperaturas.

El avión utiliza medios aerodinámicos para generar sustentación como el ala o sus estabilizadores, tanto verticales como horizontales y, el medio en el que tiene lugar es el aire. Además, los motores utilizan el aire para realizar la combustión, o tracción si hablamos de hélices.

El aire, se considera un fluido que, cuando aumenta su temperatura las moléculas que lo componen se dispersan (disminuye la densidad del aire). Si, por el contrario, su temperatura disminuyera, las moléculas ocuparían menor espacio entre sí, reduciéndose el volumen que ocupa (la densidad del aire aumenta). Esto es conocido como densidad del aire.

Relación entre la temperatura y densidad del aire con la Density Altitude (DA). Relación entre la variación con la altura (h), la temperatura (T) y la Presión (P) con la Density Altitude (DA).

Según la International Standard Atmosphere (ISA), la temperatura a nivel del mar está establecida en 15º C y, según ascendemos en la atmósfera 300 metros, ésta ha de descender 2º C. Por lo tanto, con el razonamiento anterior, podríamos decir que al ascender 300 m. desde el nivel del mar, si la temperatura es de 20º C, nos encontraríamos con que la densidad del aire es menor que la que deberíamos tener. Es decir, la temperatura es 7º C superior a la ISA (ISA+7).

Si tomamos en la atmósfera los dos parámetros de temperatura y densidad del aire al mismo tiempo, la densidad del aire disminuye a pesar del decremento de temperatura según ascendemos. Esto es debido a que la presión del aire disminuye en mayor proporción de lo que lo hace la temperatura.

Dicho esto, ¿qué es la altitud de densidad? Pues es la altitud, cuya densidad del aire sería la correspondiente a la densidad establecida en la atmósfera ISA. Es decir, si nos encontramos en Madrid, cuya elevación es de 2.000 pies. (600 m.), si su temperatura fuera de 11º C, diríamos que su altitud de densidad, de ahora en adelante DA, es de 2.000 pies. Si, por el contrario, la temperatura fuera de 17º C, al encontrarnos a ISA+6, la densidad del aire se correspondería como si estuviéramos, no a 2.000 pies, sino a 3.000 pies. Es decir que, a 2.000 pies de elevación, la DA sería de 3.000 pies. ¿Qué efectos tiene esto sobre nuestra aeronave?

Tabla para conocer la Density Altitude.

Efectos de la Altitud de Densidad.

Como hemos visto, la densidad del aire disminuye según ascendemos en la atmósfera. Una densidad de aire pequeña tiene consecuencias directas en la sustentación. Si un ala tiene una superficie determinada para generar sustentación, un aumento en su altitud de densidad (DA) supondría que la sustentación generada equivaldría a un ala de una superficie más pequeña. Es decir, que al avión le costaría mucho más generar sustentación.

Esto último, tiene un efecto muy importante. A la hora de aumentar la sustentación, el piloto ha de elevar el morro del avión, esto es el ángulo de ataque. Al elevarlo, el ángulo de ataque se aproximaría aún más al máximo: la velocidad de pérdida. Además, al disminuir al disminuir la densidad del aire, el ángulo de ataque a partir del cual entraría en pérdida se reduciría, por lo que el margen sobre esta queda sensiblemente afectado.

La actuación sobre los mandos de vuelo se ve afectada. La respuesta del avión es menor y, requiere al piloto mayor deflexión de mandos para lograr el efecto deseado. Además, requiere mayor anticipación debida a la tardía respuesta de los mandos, sobretodo en el momento del aterrizaje, lo que en algunos casos desemboca en que, en algunas ocasiones, se “sobremande” innecesariamente. Aunque este efecto es poco significativo en aviones pequeños, sí lo es en aviones de mucho tamaño.

En otro orden de cosas, si nos encontramos en un avión de hélice, ésta generaría menos tracción al tener el aire menor densidad. Si el motor no compensa la pérdida de en su densidad de aire, la potencia que de será inferior a la que daría en una atmósfera con aire más densa. Además, con elevadas temperaturas ambientales, para que el motor pueda desarrollar la potencia necesaria, trabajan a temperaturas muy cercanas a las máximas por lo que su degradación aumenta.

Como resultado de dichos aumentos en la altitud de densidad, nos encontraríamos con que nuestra aeronave necesitaría mayores longitudes de pista para despegar y ascensos de menor pendiente, con las implicaciones que tiene a la hora de salvar obstáculos en la senda de despegue. Podríamos realizar la equivalencia de que, para una pista dada, ante un aumento de la altitud de densidad, es como si acortásemos nuestra pista, o acercáramos de manera hipotética del obstáculo a librar tras el despegue.

Distancia de despegue de un avión ligero con dos DA diferentes.

En crucero, los aviones comerciales son operados a niveles altos, por encima de los 35.000 pies de altitud. Dichos niveles son los óptimos en garantías de poder reducir el consumo de combustible para aumentar su alcance, ofrecer velocidades más altas y mayor confort al pasajero. Sin embargo, volar a esos niveles implica que, como hemos visto antes, los aviones se encuentren volando con márgenes sobre la pérdida pequeños. Un aumento de temperatura sobre la ISA puede reducir ese margen, por lo que exige al piloto prestar atención a su evolución durante el vuelo, especialmente en el paso sobre la zona ecuatorial, donde las temperaturas suelen ser de media superiores a la ISA en 10ºC, obligando en ocasiones a descender para mantener el nivel de seguridad con sus márgenes adecuados.

Las tablas… La mejor herramienta del piloto.

Los pilotos realizamos antes de cada vuelo estudios sobre las actuaciones de nuestro avión para comprobar que, con las condiciones atmosféricas actuales y las esperadas en el momento del despegue, crucero y aterrizaje, se encuentren dentro los márgenes de seguridad correspondientes. En la jerga habitual a las actuaciones del avión las denominamos performance. Y para ello utilizamos las conocidas tablas de performance. Hoy en día, la mayor parte de ellas electrónicas.

En ellas, introducimos los datos atmosféricos: temperatura, presión atmosférica y viento. Además, comprobamos la longitud de pista disponible y su estado. No es lo mismo una pista seca que encharcada, de tierra, o con nieve. Además, el uso de sistemas que nos puedan afectar a la reducción de empuje de los motores, como el uso de sistemas anti-hielo o aire acondicionado, han de ser debidamente en cuenta y, qué potencia hemos de utilizar para despegar. Todo ello nos permite conocer nuestro grado de ascenso en las condiciones más conservadoras posibles, teniendo en cuenta un fallo de alguno de los motores o cuanta pista nos quedaría para frenar si tuviéramos que realizar un aborto de despegue. Además, nos permite conocer, bajo esas condiciones que configuración de flap debemos seleccionar para franquear los obstáculos que existan durante nuestro ascenso inicial.

Un factor muy importante, no mencionado en el anterior párrafo es el del peso. Es esencial conocer cuanto es el peso máximo que podemos tener al despegue. Un empeoramiento de las condiciones atmosféricas o en el estado de la pista, puede hacer que tengamos que reducir el peso máximo con el que podemos despegar. Esto significa que habría que dejar carga en tierra.

En mis recomendaciones para la aviación general ligera, y después de muchos años practicándola, es muy importante tener bien claro que no siempre se ha de poder despegar dos pilotos, algo de equipaje y los depósitos de gasolina llenos hasta arriba. En muchos casos, si el combustible es necesario para realizar una determinada etapa del vuelo, pensar en buscar un aeródromo en el que realizar una parada para repostar en el camino, tratar de despegar a horas tempranas donde la temperatura aún es suficientemente baja, o la más segura de todas: No despegar. En ocasiones, conviene comprobar en las tablas de performance si es posible despegar con algo de viento en cola en dirección a una zona carente de obstáculos, que despegar hacia un obstáculo que no sabes si serás capaz de librar con seguridad, aunque tengas el viento en cara en el despegue. No cerrarse ante una sola posibilidad es conveniente en aras a mantener la seguridad. Las pistas, habitualmente no son de un único sentido.

Aeropuertos Hot & High.

Después de haber explicado cómo influye la altitud de densidad en las operaciones aéreas, vamos a tratar de centrarnos en los aeropuertos que denominamos “hot and high”.

¿Hay algo peor para la altitud de densidad que tener mucha temperatura ambiente? Efectivamente, que además de mucha temperatura tenga una alta elevación… Esto es básicamente lo que sucede en numerosos aeropuertos de Centroamérica y Sudamérica. Quito, México, Bogotá, Medellín son típicos ejemplos con elevaciones que rondan los 5.000, 7.000 u 8.000 pies de elevación que, junto con temperaturas de alrededor de 25 a 30º C, alcancen con facilidad los 10.000 pies de altitud de densidad.

Sin embargo, si analizamos las tablas de altitud de densidad, también Madrid (España) cuya elevación son 2.000 pies con temperaturas cercanas a los 40º C en verano pueden hacer que la altitud de densidad alcance los 5.500 o 6.000 pies de DA.

Un incremento de temperatura significativo más una cierta elevación del aeropuerto, puede convertir la operación de un aeropuerto en algo delicado y que requiere una cierta atención en los cálculos de performance.

Además de los efectos antes mencionados, vamos a añadir alguno más que en estos aeropuertos son especialmente significativos.

Los pilotos tienen en la cabina indicaciones de velocidad aerodinámica respecto al aire, que son las que utiliza el piloto para volar la aeronave. Sin embargo, no son las que realmente lleva el avión respecto del suelo. Ésta última velocidad, aumenta con la altura. Es decir, para una misma velocidad indicada en el instrumento del piloto, la velocidad respecto del suelo será mayor para un aeropuerto de alta elevación que para un aeropuerto a nivel del mar, lugar en el que coincidiría la indicada con la del suelo.

Esto trae consigo, como en ausencia de viento, la velocidad respecto del suelo puede ser de unos 20 kt. superior a la indicada. Si echamos cuentas, podemos realizar un aterrizaje en el aeropuerto de México a unos 175 kt de velocidad respecto del suelo con una indicada de 155 kt…. ¡muy rápido! ¿Consecuencias? La primera es fácilmente deducible. Parar una masa de unas 160 toneladas a 175 kt no es lo mismo que pararla desde 155 kt. Necesitamos una pista más larga y una ejecución de la frenada adecuada.

Los frenos de un avión, a pesar de disponer de frenada automática, son muy delicados. Debemos calcular qué tipo de frenada vamos a utilizar para evitar un sobrecalentamiento de frenos excesivo. La técnica, tanto manual o automática ha de ser cuidadosa. Es normal superar los 400 o 500º C en un aterrizaje de semejantes características. Es habitual disponer de servicio de ventiladores para disipar el calor de los discos de freno.

Indicación de la temperatura de frenos tras un aterrizaje en el Aeropuerto Internacional de México D.F: (A340-600).

Para el despegue, donde las velocidades suelen ser mayores que las de aterrizaje debido al peso sensiblemente mayor, la velocidad de rotación (velocidad a la que el piloto actúa los mandos con el propósito de irse al aire) es muy alta. Tan alta, que muchas veces está limitada por la velocidad máxima a la que las ruedas pueden girar antes de deshacerse. En torno a 204 kt. en el mejor de los casos. En este tipo de aeropuertos de gran elevación, existe gran diferencia, bien apreciable, entre el momento en que el piloto inicia la rotación, el avión comienza a levantar el morro de la pista, y el momento en el que finalmente despega el tren principal del suelo (Lift-off). En ese transcurso de tiempo entre la rotación y el lift-off, las ruedas siguen girando sobre tierra, alcanzando fácilmente los 190 kt. Retrasar una rotación puede acarrear el riesgo de romper alguna rueda por exceso de velocidad… De nuevo el piloto ha de ejecutar una rotación a la velocidad y tiempo adecuada.

Otro problema añadido en este tipo de aeropuertos son los obstáculos. Además de todo lo comentando hasta ahora, es que la mayoría de estos aeropuertos no están situados en unas amplias planicies. Por lo que las aproximaciones han de ser bien planificadas a velocidades no demasiado altas, por lo que debemos hacer uso de los flaps desde mucha altura para llevar el avión “cogido con riendas” y evitar que se nos desboque… Existe una limitación de altitud a partir de la cual podemos comenzar a utilizar los flaps, normalmente entre 19.000 y 20.000 pies, dependiendo del modelo de avión. A la hora de aterrizar en un aeropuerto con las mencionadas complicaciones es habitual utilizar el primer punto de flap/slat cercanos a los 17.000 pies en algunos casos para poder cumplir con las restricciones de velocidad para un avión tipo A340, B777 o B747. Otra vez, cerca de su limitación.

Realizar una aproximación a un aeropuerto de gran elevación trae consigo otra complicación más. Por si faltaba alguna… Dadas las velocidades tan altas respecto al suelo, al tratar de mantener una senda constante de descenso de 3º aproximadamente, lo que es una senda habitual, nos hace resolver un problema trigonométrico sencillo: ¿Cuál es el régimen de descenso que llevaremos antes del aterrizaje? Cuando normalmente para una aproximación de 3º el régimen de descenso suele ser alrededor de 750 – 800 pies por minuto, en este tipo de aproximaciones es muy próximo a los 1.000 – 1.100 pies por minuto. Quizá estos datos no te digan nada. Pero ¿y si te digo que el régimen de descenso máximo antes de tener que realizar un motor y al aire son 1.200 pies por minuto? Es decir, el margen es de apenas 100 pies por minuto. Una vez más las correcciones que se le exigen al piloto durante la aproximación final han de realizarse muy suaves y con gran anticipación, y más aún durante el momento del aterrizaje como ya mencionamos anteriormente.

Cómo veis esto de la aviación tiene muchas peculiaridades que a través de mi carrera voy descubriendo y, que de una manera u otra trato de contároslo lo mejor que puedo. Mientras tanto, en mi cuenta de Twitter @Daniel_Jambrina voy poniendo fotos y comentarios.

Publicidad

EL GPS Y SUS APLICACIONES (II).

Sistemas de aumentación de la señal gps.

En el capítulo I sobre el GPS y sus aplicaciones acabamos hablando sobre el DGPS, o GPS diferencial. Se convertía en el primer sistema de aumentación de la señal GPS que daría lugar a varios tipos de sistemas. Desde ahí comenzamos esta segunda parte.

Los sistemas de aumentación de la señal GPS han abierto la puerta a otros tipos de aproximaciones instrumentales sin necesidad de apoyarse en ayudas radioeléctricas como el VOR, NDB o incluso el ILS, dando la capacidad realizar aproximaciones de CAT II/III o en curva donde antes la orografía no permitía una aproximación ILS.

Errores en la señal GPS.

En este punto, tenemos claro que la precisión en la posición de los receptores proviene directamente de la señal emitida por los satélites. En la primera parte y a modo repaso, comentamos el efecto del Selective Availability (SA) y que había sido eliminado en el año 2.000. Además, gracias al DGPS este efecto se contrarrestaba aumentando la precisión. Sin embargo, hay otros efectos intrínsecos que también son necesarios corregir: Error del reloj, error de efemérides, el error ionosférico y el error multitrayecto.

 Vimos como alterando en la señal el tiempo al que se envía la señal, la posición se alteraba (SA). En este caso, el error del tiempo era intencionado. Sin embargo, el reloj del GPS, a pesar de ser atómico, tiene un pequeño error que es necesario corregir.

El error de efemérides, suele rondar los 2,5 m. Los satélites siguen órbitas determinadas alrededor del planeta Tierra. Sin embargo, el planeta no es un globo perfecto y las fuerzas gravitacionales que actúan sobre los satélites no son constantes, lo que implica que las órbitas satelitales necesitan corregirse constantemente. Esto afecta a la posición del satélite para un instante determinado.

El error ionosférico es el más significativo. Según varias fuentes oscila entre los 3 y los 5 metros. Este error es debido a que la señal GPS tiene que atravesar la capa atmosférica y, al hacerlo, la señal cambia su velocidad y se refracta, provocando un retraso en la señal.

Por último, el error de multitrayecto, es un error más pequeño que los anteriores. Está relacionado con el reflejo de la señal del GPS con la superficie. Provoca que el receptor reciba la misma señal en diferentes rangos debidos al rebote. La orografía es un claro ejemplo. 

Sistemas de aumentación de la señal GNSS.

El GPS por sí mismo no podía dar un servicio de navegación aérea apropiado ya que, debido a todos los errores mencionados en el apartado anterior, no cumplía con los requisitos del anexo de 10 de OACI: Precisión, Disponibilidad e Integridad. Con la aparición del DGPS, la FAA se dio cuenta de que podría adaptarlo a la aviación no sólo para la navegación de enruta, sino para dar servicio de aproximación por instrumentos sin depender de las actuales radioayudas eliminándolas en un futuro cercano. (Australia ya comenzó a desmantelar todos los VOR y NDB).

GBAS.

Surgió entonces el LAAS (Local Area Augmentation System). No era otro que un sistema basado en los mismos principios que el DGPS pero con alguna mejora. El sistema permitiría obtener aproximaciones instrumentales del tipo ILS sin necesidad de utilizar señales radioeléctricas. Con el tiempo, pasaría a denominarse GBAS (Ground Based Augmentation System), término utilizado en OACI. Aunque todavía quedan referencias con la terminología anterior LAAS, no existen diferencias prácticas.

¿Cómo funciona el GBAS? En un área determinada se instalan 3 o más antenas receptoras de GPS que funcionan como referencia. Dichas antenas miden el tiempo de la señal entre el satélite y la antena, y calculan la posición. Dicha posición es enviada al GBAS Ground Facility y determina el error y el error medio de la señal GPS. Dicho error es transmitido al equipo de aviónica del avión mediante una antena emisora que opera mediante VHF Datalink (VDB). Como función añadida, el GBAS monitoriza la funcionalidad de los satélites, eliminándolo de la ecuación si fuera necesario.

Esquema de antenas del GBAS (imagen FAA).

El GBAS da cobertura en un área de unas 23 NM y permite ofrecer hasta 48 tipos de aproximación diferentes. Hasta hace dos años, tenía la capacidad de ofrecer CAT I, pero hoy en día tiene capacidad CAT II/III. A este tipo de aproximaciones se les conoce como GLS (GBAS Landing System). Podemos encontrarlas en numerosos aeropuertos de Estados Unidos, Asia y en otros como Rio de Janeiro, Bremen, Frankfurt, Zurich y Málaga.

SBAS.

Dado el éxito del GBAS, se propuso la idea de mejorar la señal del GPS en un entorno mayor al de las 23 NM. Así, la FAA implementó el WAAS (Wide Area Augmentation System). Para el sistema WAAS, se crearon Estaciones de Referencia WRS (Wide-area Reference Stations) distribuidas por el territorio norteamericano y Hawaii, en concreto 38. Estas estaciones hacen la labor de recibir las señales del GPS y compararlas con su propia localización exacta por lo que son capaces de detectar los errores. Esta información recolectada por los WRS (existen 3) es enviada a las WAAS Master Stations (WMS) que generan un mensaje cada segundo. Dicho mensaje contiene información que permite a los receptores de GPS/WAAS corregir el error de posición mejorando su precisión y su integridad. ¿Pero como se consigue enviar el mensaje a los receptores GPS?

Arquitectura WAAS (imagen FAA). Similar al sistema EGNOS europeo.

Para el envío de dichos mensajes, se lanzaron un total de 3 satélites de comunicaciones geoestacionarios que recibían de 6 estaciones o antenas (GEO Uplink System), los paquetes de información y la difundían utilizando el mismo método de envío de las señales GPS. De esta manera, el propio receptor GPS podría recalcular su posición corrigiendo la señal de los GPS con la del mensaje corrector enviada por los satélites geoestacionarios. Al mismo tiempo el propio sistema monitoriza y avisa cualquier dato erróneo que pudiera existir, permitiendo al receptor contar con la fiabilidad adecuada.

Dado el uso de satélites geoestacionarios para el envío de la señal correctora, OACI lo denominó SBAS (Satellite Based Augmentation System). Dado que el WAAS es un sistema SBAS sólo válido para el territorio de Estados Unidos y Hawaii, otras naciones decidieron poner en órbita su propia constelación geoestacionaria. En el caso de Europa, su sistema es el EGNOS. Rusia, India, Japón y China también disponen del suyo.

Sistemas SBAS.

Los sistemas SBAS mencionados anteriormente son interoperables. Es decir, permiten al mismo receptor utilizar las señales en todas las zonas de cobertura GPS.

El sistema SBAS, nos permite realizar aproximaciones SLS (SBAS Landing System) hasta mínimos LPV. Es decir, “Localizer Performace and Vertical guidance”. Lo que podemos traducir a ser capaces de realizar una aproximación como si fuera un ILS, hasta unos mínimos verticales geométricos y no barométricos (utilizando el altímetro).

¿Hay alguna diferencia entre los receptores comunes de GPS y los que utilizan SBAS? Sí. En modelos de avión de líneas aéreas es menos visible dado que, en el caso de Airbus, se integra en los MMR del avión. Hablaremos de esto en la siguiente parte. En el caso de aviones ligeros, el equipo utilizado es diferente y si se desea acceder a este tipo de capacidad de navegación es necesario utilizar un GPS con función SBAS. En algunos GPS, la denominación del aparato GPS cambia a “W”. Por ejemplo, GARMIN en el modelo G430, el que tiene la capacidad de realizar estas aproximaciones es G430W.

ABAS.

Una mención aparte merece el ABAS (Aircraft-Based Augmentation system). Como su propio nombre indica, será la aeronave mediante sus equipos de aviónica que mejoran su precisión de navegación. Sin embargo, aunque lo hay, esto no significa que utilice la señal GPS como en los casos anteriores del SBAS y GBAS.

Los equipos de aviónica realizan cálculos mediante algoritmos utilizando otros sensores para corregir su posición. Los más utilizados son los sistemas inerciales de navegación (INS), el DME/DME, o la mezcla de ambos. De hecho, es muy común encontrarse con requerimientos de navegación DME/DME para realizar aproximaciones RNAV-1, por ejemplo. Sin necesidad de requerir GPS.

Otro sistema ABAS muy extendido es el RAIM (Receiver Autonomous Integrity Monitoring que utiliza señales redundantes del GPS para detectar fallos.

Tanto del RAIM como de los distintos tipos de aproximaciones, hablaremos en el siguiente capítulo.